b8 STATISTICS MT 2001

Problem Sheet 7 (Vacation)

1. This question gives a way of deriving least squares estimators which is different from that in lectures.

Consider the standard linear model

$$Y = X\theta + \varepsilon$$

where **Y** is a random *n*-vector with observed values **y**, **X** is a $n \times p$ design matrix of rank p < n, $\boldsymbol{\theta}$ is a *p*-vector of parameters to be estimated, and $\boldsymbol{\varepsilon}$ is a vector of independent normal random variables with zero means and variances σ^2 . Show that

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) = (\boldsymbol{\theta} - \mathbf{B}^{-1}\mathbf{X}^T\mathbf{y})^T\mathbf{B}(\boldsymbol{\theta} - \mathbf{B}^{-1}\mathbf{X}^T\mathbf{y}) + \mathbf{y}^T(\mathbf{I} - \mathbf{X}\mathbf{B}^{-1}\mathbf{X}^T)\mathbf{y}$$

where $\mathbf{B} = \mathbf{X}^T \mathbf{X}$.

Hence find the least squares estimator $\widehat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}$, i.e. the value of $\boldsymbol{\theta}$ that minimizes $(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$.

Show that $\widehat{\boldsymbol{\theta}}$ is unbiased for $\boldsymbol{\theta}$ and find its covariance matrix. Deduce that the sum of squares of residuals of the fitted model $(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\theta}})^T(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\theta}})$ is given by

$$RSS = \mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \widehat{\boldsymbol{\theta}}.$$

How would you estimate σ^2 ?

2. The observations (x_i, Y_i) satisfy the equation

$$Y_i = \alpha + \beta(x_i - \overline{x}) + \varepsilon_i, \qquad i = 1, \dots, n,$$

where α and β are unknown constants, $\overline{x} = n^{-1} \sum x_i$ and the ε_i 's are independent normal random variables with mean zero and variance σ^2 . The x_i 's are not all equal.

Show that the covariance matrix of the least squares estimators of α and β is

$$\begin{pmatrix} \frac{\sigma^2}{n} & 0\\ 0 & \frac{\sigma^2}{\sum (x_i - \overline{x})^2} \end{pmatrix}.$$

Consider estimating the value of Y when x = 0. What estimate would you use, and what is the appropriate variance?

Now suppose that Y_i depends on two explanatory variables x_i and z_i according to the model

$$Y_i = \alpha + \beta(x_i - \overline{x}) + \gamma z_i + \varepsilon_i, \qquad i = 1, \dots, n,$$

where the vectors (x_1, \ldots, x_n) , (z_1, \ldots, z_n) and $(1, \ldots, 1)$ are linearly independent. Show that the variance of the least squares estimator of β is

$$\frac{\sigma^2 \sum (z_i - \overline{z})^2}{\sum (x_i - \overline{x})^2 \sum (z_i - \overline{z})^2 - \left(\sum (x_i - \overline{x})(z_i - \overline{z})\right)^2}.$$

3. A spark chamber consists of a series of parallel metal plates fixed in the planes $x = x_i$, i = 1, ..., n. A particle emerges at the origin travelling on a parabolic trajectory whose axis is parallel to the y-axis, and causes sparks where the trajectory crosses the plates. Photographs showing the (x, y)-projection of the trajectory are then analysed to provide coordinates (x_i, y_i) , i = 1, ..., n, for the point of emission of each spark, but the measurement of the y-coordinates are subject to independent errors drawn from a common normal distribution $N(0, \sigma^2)$. Show that the method of least squares gives the equation of the (x, y)-projection of the trajectory on the photographs as

$$y = x \left[\frac{(c_1 s_4 - c_2 s_3) + (c_2 s_2 - c_1 s_3)x}{s_2 s_4 - s_3^2} \right]$$

where $s_r = \sum x_i^r$ and $c_r = \sum y_i x_i^r$.

4. Let the independent random variables X_1 , X_2 have respective means μ_1 , μ_2 and variances σ_1^2 , σ_2^2 . Use a Taylor expansion of the function $h(x_1, x_2) = x_1/x_2$ about (μ_1, μ_2) to show that, for σ_1^2 and σ_2^2 both small, the variance of X_1/X_2 is approximately given by

$$\operatorname{var}\left(\frac{X_1}{X_2}\right) \approx \frac{\sigma_1^2}{\mu_2^2} + \frac{\mu_1^2 \sigma_2^2}{\mu_2^4}.$$

The yield Y of an industrial process is known to be a quadratic function of the temperature x. Measurements of yield at different temperatures are made comprising m observations at temperature $x = x_0$ and n observations at each of $x = x_0 + 1$ and $x = x_0 - 1$. Measurement errors are independent and normally distributed with zero mean and variance σ^2 . Writing the quadratic model in the form

$$E(Y \mid x) = \alpha + \beta(x - x_0) + \gamma(x - x_0)^2,$$

show that the least squares estimates of β and γ are given by

$$\widehat{\beta} = \frac{1}{2} (\overline{Y}_1 - \overline{Y}_{-1}), \qquad \widehat{\gamma} = \frac{1}{2} (\overline{Y}_1 + \overline{Y}_{-1} - 2\overline{Y}_0),$$

where $\overline{Y}_0, \overline{Y}_1, \overline{Y}_{-1}$ are the means of the observations at $x_0, x_0 + 1, x_0 - 1$, respectively. Show that, provided $\gamma < 0$, the maximum expected yield is obtained when $x = x_0 - \beta/2\gamma = x^*$ say, and that when σ^2 is small, the variance of the estimate $x_0 - \widehat{\beta}/2\widehat{\gamma}$ of x^* is approximately

$$\frac{\sigma^2}{8\gamma^4} \left(\frac{\beta^2 + \gamma^2}{n} + \frac{2\beta^2}{m} \right).$$

Please turn over

5. Consider the linear model

$$Y_i = a + bx_i + \varepsilon_i, \qquad i = 1, \dots, n,$$

where the independent random variables ε_i are normally distributed with mean zero and unknown variance σ^2 . Derive the least squares estimates \widehat{a} and \widehat{b} of a and b and show that they are unbiased. How would you estimate the variances of \widehat{a} and \widehat{b} ?

Show how you would use your estimates of a, b, σ^2 to construct a $100(1-\alpha)\%$ confidence interval for the predicted value of y at any given point x.

In calibration problems it is common for estimates of a and b to be used to predict a value of x for a given y. By considering the distribution of the random variable

$$W = \widehat{a} + \gamma \widehat{b} - y,$$

where $\gamma = (y-a)/b$, show how to construct a $100(1-\alpha)\%$ confidence interval for the predicted value of x.