Recap: Regression

\[Z_i = (X_i, Y_i) \in \mathbb{R}^d \times \mathbb{R}. \ A \subseteq \mathcal{B} := \{ a : \mathbb{R}^d \to \mathbb{R} \}. \ l(a, (x, y)) = \phi(a(x), y) \]

Goal:

\[\text{Rad}(A \circ \{x_1, \ldots, x_n\}) \leq \frac{f(\text{dimension, complexity of } A)}{n^\alpha} \]

SVM (Proposition 3.2)

Let \(A_2 := \{ x \in \mathbb{R}^d \to w^\top x : \|w\|_2 \leq c \}. \) Then

\[\text{Rad}(A_2 \circ \{x_1, \ldots, x_n\}) \leq \max_i \|x_i\|_\infty c \frac{\sqrt{d}}{\sqrt{n}} \]

Boosting (Proposition 3.6)

Let \(A_\Delta := \{ x \in \mathbb{R}^d \to w^\top x : \|w\|_1 = c, w_1, \ldots, w_d \geq 0 \}. \) Then

\[\text{Rad}(A_\Delta \circ \{x_1, \ldots, x_n\}) \leq \max_i \|x_i\|_\infty c \frac{\sqrt{2 \log d}}{\sqrt{n}} \]

Difference between \(d \) and \(\log d \) related to difference between \(\ell_2 \) and \(\ell_1 \) ball, resp.
Today: Classification (binary)

- \(Z_i = (X_i, Y_i) \in \mathbb{R}^d \times \{-1, 1\} \)
- Admissible action set \(\mathcal{A} \subseteq \mathcal{B} := \{a : \mathbb{R}^d \to \{-1, 1\}\} \)
- Loss function \(\ell(a, (x, y)) = \phi(a(x), y) \), for \(\phi : \{-1, 1\}^2 \to \mathbb{R}_+ \)
- Today we consider \(\phi(\hat{y}, y) = 1_{\hat{y} \neq y} = (1 - y\hat{y})/2 \), a.k.a. the true loss

Recall. For regression we used:

(Proposition 3.1)

If the function \(\hat{y} \to \phi(\hat{y}, y) \) is \(\gamma \)-Lipschitz for any \(y \in \mathcal{Y} \), then

\[
\text{Rad}(\mathcal{L} \circ \{z_1, \ldots, z_n\}) \leq \gamma \text{Rad}(\mathcal{A} \circ \{x_1, \ldots, x_n\})
\]

For classification with the true loss we can use:

(Proposition 4.1)

If \(\phi \) is the true loss, then

\[
\text{Rad}(\mathcal{L} \circ \{z_1, \ldots, z_n\}) = \frac{1}{2}\text{Rad}(\mathcal{A} \circ \{x_1, \ldots, x_n\})
\]
Growth Function

- \(\mathcal{A} \circ \{x_1, \ldots, x_n\} = \{(a(x_1), \ldots, a(x_n)) \in \{-1, 1\}^n : a \in \mathcal{A}\} \)
- \(|\mathcal{A} \circ \{x_1, \ldots, x_n\}| \leq 2^n \) even if the class \(\mathcal{A} \) is infinite
- **Important:** It can grow **polynomially** with \(n \)

Growth function (Definition 4.2)

The *growth function* of \(\mathcal{A} \) is defined as

\[
\tau_\mathcal{A}(n) := \sup_{x_1, \ldots, x_n \in \mathbb{R}^d} |\mathcal{A} \circ \{x_1, \ldots, x_n\}|
\]

Max number of labelings of \(n \) vectors that we can obtain using classifiers in \(\mathcal{A} \)

Yields “data-independent” bound on Rademacher complexity (Massart’s lemma)

(Proposition 4.3)

\[
\text{Rad}(\mathcal{A} \circ \{x_1, \ldots, x_n\}) \leq \sqrt{\frac{2 \log \tau_\mathcal{A}(n)}{n}}
\]

Note: To drive convergence to 0 as \(n \) grows, we need \(\tau_\mathcal{A} \) to grow **polynomially**.
Growth Function: Examples

- **Half spaces over the real line** $A = \{a(x) = 21_{x \leq w - 1} : w \in \mathbb{R}\}$

 $0000 \ldots 0$
 $1000 \ldots 0$
 $1100 \ldots 0$
 \vdots
 $1111 \ldots 1$

 $\tau_A(n) = n + 1$

- **Intervals over the real line** $A = \{a(x) = 21_{w^- \leq x \leq w^+} - 1 : w^- \leq w^+\}$

 $0000 \ldots 00$
 $1000 \ldots 00$
 $0100 \ldots 00$
 $0010 \ldots 00$
 \vdots
 $00000 \ldots 00$
 $10000 \ldots 01$
 $11000 \ldots 10$
 $01000 \ldots 11$
 $00100 \ldots 11$
 \vdots
 $1111 \ldots 11$

 $\tau_A(n) = 1 + n(n + 1)/2$

Problem: not always easy to compute!
Solution: VC dimension
VC Dimension

VC dimension (Definition 4.6)

\[\text{VC}(A) := \max\{n \in \mathbb{N} : \tau_A(n) = 2^n\} \]

If \(\tau_A(n) = 2^n \) for all integer \(n \), then \(\text{VC}(A) = \infty \)

- **Half spaces over the real line** \(A = \{a(x) = 21_{x \leq w - 1} : w \in \mathbb{R}\} \)
 \[\tau_A(n) = n + 1 \]
 \(\tau_A(1) = 2^1 \) and \(\tau_A(2) = 3 < 2^2 \implies \text{VC}(A) = 1 \)

- **Intervals over the real line** \(A = \{a(x) = 21_{w^- \leq x \leq w^+} - 1 : w^- \leq w^+\} \)
 \[\tau_A(n) = 1 + n(n + 1)/2 \]
 \(\tau_A(2) = 2^2 \) and \(\tau_A(3) = 7 < 2^3 \implies \text{VC}(A) = 2 \)

Key point: We can compute the VC dimension without computing \(\tau_A \)

- **Sufficient** to find \(k \) such that \(\tau_A(k) = 2^k \) and \(\tau_A(k + 1) < 2^{k+1} \)
 - This can be done without computing \(\tau_A \). **Sufficient** to:
 - Find distinct \(x_1, \ldots, x_k \) that are “shattered” by \(A \) \(\Rightarrow \) \(\text{VC}(A) \geq k \)
 (i.e., classifiers in \(A \) can assign all possible \(2^k \) labelings to these points)
 - Show that no set of \(k + 1 \) points can be “shattered” by \(A \) \(\Rightarrow \) \(\text{VC}(A) < k + 1 \)
 (i.e., for any set of \(k + 1 \) points there is a label that can not be assigned)
Bounds using VC Dimension

If $\text{VC}(\mathcal{A})$ is finite, then $\tau_\mathcal{A}$ eventually grows polynomially

Sauer-Shelah's Lemma (Lemma 4.11)

$$
\tau_\mathcal{A}(n) = \begin{cases}
2^n & \text{if } n \leq \text{VC}(\mathcal{A}) \\
\leq \left(\frac{en}{\text{VC}(\mathcal{A})} \right)^{\text{VC}(\mathcal{A})} & \text{if } n > \text{VC}(\mathcal{A})
\end{cases}
$$

(Proposition 4.12)

For any $x_1, \ldots, x_n \in \mathbb{R}^d$ we have

$$
\text{Rad}(\mathcal{A} \circ \{x_1, \ldots, x_n\}) \leq \sqrt{\frac{2 \text{VC}(\mathcal{A}) \log(en/\text{VC}(\mathcal{A}))}{n}}
$$

- This bound is “data-independent” as it holds for any x_1, \ldots, x_n (as such, it does not allow to exploit the statistical nature of the data)
- We will remove the log-term using covering numbers and chaining
Covering and Packing Numbers

A pseudometric space \((S, \rho)\) is a set \(S\) and a function \(\rho : S \times S \rightarrow \mathbb{R}_+\) (called a pseudometric) such that, for any \(x, y, z \in S\) we have:

1. \(\rho(x, y) = \rho(y, x)\) (symmetry)
2. \(\rho(x, z) \leq \rho(x, y) + \rho(y, z)\) (triangle inequality)
3. \(\rho(x, x) = 0\)

A metric space is obtained if one further assumes that \(\rho(x, y) = 0\) implies \(x = y\).

Covering and Packing Numbers (Definition 4.13)

Let \((S, \rho)\) be a pseudometric space, \(\varepsilon > 0\)

1. The set \(C \subseteq S\) is a \(\varepsilon\)-cover of \((S, \rho)\) if for every \(x \in S\) there exists \(y \in C\) such that \(\rho(x, y) \leq \varepsilon\). The set \(C \subseteq S\) is a minimal \(\varepsilon\)-cover if there is no other \(\varepsilon\)-cover with lower cardinality. The cardinality of any minimal \(\varepsilon\)-cover is the \(\varepsilon\)-covering number, denoted by \(\text{Cov}(S, \rho, \varepsilon)\).

2. The set \(P \subseteq S\) is a \(\varepsilon\)-packing of \((S, \rho)\) if for every \(x, x' \in P\) we have \(\rho(x, x') > \varepsilon\). The set \(P \subseteq S\) is a maximal \(\varepsilon\)-packing if there is no other \(\varepsilon\)-packing with greater cardinality. The cardinality of any maximal \(\varepsilon\)-packing is the \(\varepsilon\)-packing number, denoted by \(\text{Pack}(S, \rho, \varepsilon)\).
Covering and Packing Numbers. Properties

Duality (Proposition 4.14)

\[
\text{Cov}(S, \rho, \varepsilon) \leq \text{Pack}(S, \rho, \varepsilon) \leq \text{Cov}(S, \rho, \varepsilon/2)
\]

Covering and packing numbers typically grow **exponentially** with the dimension.

Bounded Balls (Proposition 4.15)

\[B^d_r := \{y \in \mathbb{R}^d : \|y\| \leq r\}\] be the \(d\)-dim. ball with radius \(r \geq 0\). If \(\varepsilon \leq r\), then

\[
\left(\frac{r}{\varepsilon}\right)^d \leq \text{Cov}(B^d_r, \| \cdot \|, \varepsilon) \leq \text{Pack}(B^d_r, \| \cdot \|, \varepsilon) \leq \left(\frac{3r}{\varepsilon}\right)^d
\]

Proof: Volume argument

Covering and packing numbers grow exponentially also w.r.t. the **VC dimension**. This, along with chaining, will allow us to remove the log-term in Prop. 4.12.