Offline learning: prediction

Given a batch of observations (images & labels) interested in predicting the label of a new image
Offline statistical learning: prediction

1. Observe training data Z_1, \ldots, Z_n i.i.d. from unknown distribution
2. Choose action $A \in \mathcal{A} \subseteq \mathcal{B}$
3. Suffer an expected/population loss/risk $r(A)$, where

\[
\begin{align*}
a \in \mathcal{B} \rightarrow r(a) &:= \mathbb{E} \ell(a, Z)
\end{align*}
\]

with ℓ is an prediction loss function and Z is a new test data point

Goal: Minimize the estimation error defined by the following decomposition

\[
\begin{align*}
r(A) - \inf_{a \in \mathcal{B}} r(a) &= r(A) - \inf_{a \in \mathcal{A}} r(a) + \inf_{a \in \mathcal{A}} r(a) - \inf_{a \in \mathcal{B}} r(a) \\
&= \text{excess risk} + \text{estimation error} + \text{approximation error}
\end{align*}
\]

as a function of n and notions of “complexity” of the set \mathcal{A} of the function ℓ

Note: Estimation/Approximation trade-off, a.k.a. complexity/bias
ERM and Uniform Learning

▶ A natural framework is given by the empirical risk minimization (ERM)

\[
a \in \mathcal{B} \rightarrow R(a) := \frac{1}{n} \sum_{i=1}^{n} \ell(a, Z_i)
\]

▶ A natural algorithm is given by the minimizer of the ERM

\[
A^* \in \arg\min_{a \in A} R(a)
\]

▶ Uniform Learning: The estimation error is bounded by

\[
\underbrace{r(A^*) - r(a^*)}_{\text{estimation error for ERM}} \leq \sup_{a \in A} \{ r(a) - R(a) \} + \sup_{a \in A} \{ R(a) - r(a) \}
\]

▶ Statistical Learning deals with bounding the Statistics term (Vapnik 1995)

▶ Generalization Error: \(r(a) - R(a) \approx \frac{1}{n^{(\text{test})}} \sum_{i=1}^{n^{(\text{test})}} \ell(a, Z_i^{(\text{test})}) - \frac{1}{n} \sum_{i=1}^{n} \ell(a, Z_i) \)
Goal: derive bounds in expectation

- Goal:

\[
\mathbb{E} (r(A^*) - r(a^*)) \lesssim \frac{f(\text{dimension})}{n^\alpha}
\]

estimation error for ERM

- By uniform learning, it suffices to bound the suprema of random processes:

\[
\mathbb{E} g(Z_1, \ldots, Z_n) \leq \frac{f(\text{dimension, complexity of } \mathcal{A})}{n^\alpha}
\]

with
\[
g(Z_1, \ldots, Z_n) = \sup_{a \in \mathcal{A}} \{r(a) - R(a)\} = \sup_{a \in \mathcal{A}} \left\{ \mathbb{E} \ell(a, Z) - \frac{1}{n} \sum_{i=1}^{n} \ell(a, Z_i) \right\}
\]

- We aim to derive a uniform, non-asymptotic Law of Large Numbers

- In machine learning, dimension can be \(\gg 10^6 \), e.g., number of pixels

- Ideally, \(f(\text{dimension}) \ll \text{dimension} \), e.g., \(f(\text{dimension}) \sim \log(\text{dimension}) \)

- Ideally, \(\alpha = 1 \) (fast rate)
Hoeffding’s Lemma (Lemma 2.1)

Let X be a bounded random variable $a \leq X \leq b$. Then, for any $\lambda \in \mathbb{R}$ we have

$$\mathbb{E} e^{\lambda(X - \mathbb{E}X)} \leq e^{\lambda^2(b - a)^2 / 8}$$

Proof

- W.l.o.g., take $\mathbb{E}X = 0$. Let $\psi(\lambda) = \log \mathbb{E} e^{\lambda X}$

 $$\psi'(\lambda) = \frac{\mathbb{E}[X e^{\lambda X}]}{\mathbb{E} e^{\lambda X}} \quad \psi''(\lambda) = \frac{\mathbb{E}[X^2 e^{\lambda X}]}{\mathbb{E} e^{\lambda X}} - \left(\frac{\mathbb{E}[X e^{\lambda X}]}{\mathbb{E} e^{\lambda X}}\right)^2$$

- $\psi''(\lambda)$ is the variance of X under the distribution $Q(dx) = \frac{e^{\lambda x}}{\mathbb{E} e^{\lambda X}} P(dx)$

 $$\psi''(\lambda) = \text{Var}_Q(X - \frac{a + b}{2}) \leq \mathbb{E}_Q \left[\left(X - \frac{a + b}{2} \right)^2 \right] \leq \frac{(b - a)^2}{4}$$

- Fundamental Thm of Calculus: $\psi(\lambda) = \int_0^\lambda \int_0^\mu \psi''(\rho)d\rho d\mu \leq \frac{\lambda^2(b - a)^2}{8}$

\square
Maximum of finitely many bounded random variables (Proposition 2.2)

Let X_1, \ldots, X_n be n centered random variables bounded in the interval $[a, b]$.

\[
\mathbb{E} \max_{i \in [n]} X_i \leq \frac{b - a}{\sqrt{2}} \sqrt{\log n}
\]

Proof

- $X = \max_{i \in [n]} X_i$. Exponentiate. Jensen’s ineq. as $x \to e^{\lambda x}$ ($\lambda > 0$) is convex:

\[
\mathbb{E} X = \frac{1}{\lambda} \log e^{\lambda \mathbb{E} X} \leq \frac{1}{\lambda} \log \mathbb{E} e^{\lambda X}
\]

- Bound maximum of non-negative numbers by the sum:

\[
\mathbb{E} e^{\lambda X} = \mathbb{E} e^{\lambda \max_{i \in [n]} X_i} = \mathbb{E} \max_{i \in [n]} e^{\lambda X_i} \leq \mathbb{E} \sum_{i=1}^{n} e^{\lambda X_i} = \sum_{i=1}^{n} \mathbb{E} e^{\lambda X_i}
\]

- Put everything together and use Hoeffding’s lemma ($\mathbb{E} e^{\lambda X_i} \leq e^{\lambda^2(b-a)^2/8}$):

\[
\mathbb{E} \max_{i \in [n]} X_i \leq \frac{1}{\lambda} \log \sum_{i=1}^{n} e^{\lambda^2(b-a)^2/8} = \frac{1}{\lambda} \log n + \frac{\lambda(b - a)^2}{8}
\]

- Optimizing the bound $\alpha/\lambda + \lambda \beta$ over $\lambda > 0$ yields the maximum is at $\lambda = \sqrt{\alpha/\beta}$ and the optimal value $2\sqrt{\alpha \beta} = (b - a) \sqrt{\log n/2}$
Bound in expectation for finitely-many actions

Bound in expectation (Proposition 2.3)

If the loss function ℓ is bounded by c, we have

$$E \max_{a \in \mathcal{A}} \{r(a) - R(a)\} \leq c \frac{\sqrt{2 \log |\mathcal{A}|}}{\sqrt{n}}$$

Proof: Same as above, using the independence of the data Z_1, \ldots, Z_n (note that for each $a \in \mathcal{A}$, $r(a) - R(a)$ is a centered random variable as $E R(a) = r(a)$)

- Recall wish:
 $$E \sup_{a \in \mathcal{A}} \{r(a) - R(a)\} \leq \frac{f(\text{dimension, complexity of } \mathcal{A})}{n^\alpha}$$

- The dimension of the data is superseded by the boundedness assumption

- $\alpha = 1/2$, slow rate

- When $|\mathcal{A}| < \infty$, $|\mathcal{A}|$ is a valid notion of complexity of the problem

- When $|\mathcal{A}| = \infty$, upper bound is trivial and we need another notion of complexity
Rademacher complexity

Rademacher complexity of a set (Definition 2.5)

The Rademacher complexity of a set $\mathcal{T} \subseteq \mathbb{R}^n$ is defined as

$$\text{Rad}(\mathcal{T}) := \mathbb{E} \sup_{t \in \mathcal{T}} \frac{1}{n} \sum_{i=1}^{n} \Omega_i t_i$$

where $\Omega_1, \ldots, \Omega_n \in \{-1, 1\}$ are i.i.d. uniform random variables (Rademacher)

- Measures of complexity: describes how well elements in \mathcal{T} can replicate the sign pattern of a uniform random signal $\in \mathbb{R}^n$ (see Problem 1.4)
- Useful properties:
 - $\text{Rad}(c\mathcal{T} + v) = |c| \text{Rad}(\mathcal{T})$ (Proposition 2.6)
 - $\text{Rad}(\mathcal{T} + \mathcal{T}') = \text{Rad}(\mathcal{T}) + \text{Rad}(\mathcal{T}')$ (Proposition 2.7)
 - $\text{Rad}(\text{conv}(\mathcal{T})) = \text{Rad}(\mathcal{T})$ (Proposition 2.8)

with $\text{conv}(\mathcal{T}) = \{\sum_{j=1}^{m} w_j t_j : w \in \Delta_m, t_1, \ldots, t_m \in \mathcal{T}, m \in \mathbb{N}\}$
Rademacher complexity

Massart’s Lemma (Lemma 2.9)

Let $\mathcal{T} \subseteq \mathbb{R}^n$ and $\bar{t} := \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} t$. We have

$$\text{Rad}(\mathcal{T}) \leq \max_{t \in \mathcal{T}} \|t - \bar{t}\|_2 \sqrt{\frac{2 \log |\mathcal{T}|}{n}}$$

Proof: Similar to ones given above. **Problem 1.5**

Contraction property - Talagrand’s Lemma (Lemma 2.10)

Let $\mathcal{T} \subseteq \mathbb{R}^n$. For each $i \in \{1, \ldots, n\}$, let $f_i : \mathbb{R} \to \mathbb{R}$ be a γ-Lipschitz function. Then,

$$\text{Rad}((f_1, \ldots, f_n) \circ \mathcal{T}) \leq \gamma \text{Rad}(\mathcal{T})$$

with $(f_1, \ldots, f_n) \circ \mathcal{T} := \{(f_1(t_1), \ldots, f_n(t_n)) \in \mathbb{R}^n : t \in \mathcal{T}\}$

Proof: **Problem 1.6** (optional)
Rademacher complexity

Bound in expectation via Rademacher complexity (Proposition 2.11)

\[E \sup_{a \in A} \{ r(a) - R(a) \} \leq 2 E \text{Rad}(\mathcal{L} \circ \{Z_1, \ldots, Z_n\}) \]

with

\[\mathcal{L} := \{ z \in \mathcal{Z} \rightarrow \ell(a, z) \in \mathbb{R} : a \in \mathcal{A} \} \]

and

\[\mathcal{L} \circ \{Z_1, \ldots, Z_n\} := \{ (\ell(a, Z_1), \ldots, \ell(a, Z_n)) \in \mathbb{R}^n : a \in \mathcal{A} \} \]

▶ Recall wish:

\[E \sup_{a \in A} \{ r(a) - R(a) \} \leq \frac{f(\text{dimension, complexity of } \mathcal{A})}{n^\alpha} \]

▶ Next lecture we will bound the Rademacher complexity in different settings
Proof: Symmetrization

Proof

Let \(\{\tilde{Z}_1, \ldots, \tilde{Z}_n\} \) be a new sample of independent random variables:

\[
 r(a) = \mathbf{E} \ell(a, Z) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E} \ell(a, \tilde{Z}_i) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}[\ell(a, \tilde{Z}_i) | S]
\]

By properties of conditional expectations (tower property and others) we get

\[
 \mathbf{E} \sup_{a \in \mathcal{A}} \{ r(a) - R(a) \} = \mathbf{E} \sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{E}[\ell(a, \tilde{Z}_i) | S] - \ell(a, Z_i) \right)
\]

\[
 = \mathbf{E} \sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}[\ell(a, \tilde{Z}_i) - \ell(a, Z_i) | S]
\]

\[
 \leq \mathbf{E}\mathbf{E} \left[\sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \{ \ell(a, \tilde{Z}_i) - \ell(a, Z_i) \} \bigg| S \right]
\]

\[
 = \mathbf{E} \sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \{ \ell(a, \tilde{Z}_i) - \ell(a, Z_i) \}
\]

\[
 = \mathbf{E} \sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \Omega_i \{ \ell(a, \tilde{Z}_i) - \ell(a, Z_i) \}
\]

\[
 = 2 \mathbf{E} \sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \Omega_i \ell(a, Z_i) = 2 \mathbf{E} \text{Rad} (\mathcal{L} \circ \{Z_1, \ldots, Z_n\})
\]