Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up
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Desiderata for Distributed Machine Learning
Suppose n agents solving a machine learning problem. Properties of an 1deal distributed algorithm:
Statistics: retain optimal statistical precision
Runtime: speed-up over single-agent due to parallel computing: i1deally factor n

Communication: fixed cost per agent per step, ideally independent of n

Consensus Optimisation for Decentralised Learning

Network of agents G = (V, &), each with data points sampled i.i.d (x; ,, y; ,,) perform linear re-
gression. Therefore each agent wishes to minimise with coefficient w & RY
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Empirical Loss for Agent v Consensus Optimisation

where F), 1s function held by agent v.
Consensus Optimisation
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Suppose [, arbitrary and each agent wants to minimise — > v/ Fy.

— Agents alternate: local gradient descent steps on F, and local averaging on network [4]

v/ Low communication cost per agent for sparse graphs
v/ Robust/Decentralised as no single node responsible for disseminating information

X Performance depends on network topology [2, 5].

Graphs with smaller spectral gap benefit less from decentralisation

In machine learning F, are often not arbitrary

Optimal Statistical Rate with Implicit Regularisation
Let aforementioned assumptions hold with » > 1/2 and 2r + v > 2. Fix
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n = i (nmt) and let m > n?+-2 then Vv € V:
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Test Error Optimal Statistical Rate

Time Model

Gradient computation costs 1 unit of time.
Communication delay costs 7 units of time, for some 7 > 0.

Distributed time per iteration = m + 7 + Deg(P)

Local Gradient Computation  Communicating/Aggreagating Neighbours Information

Speed-Up defined as

Sneed-Up — Single Machine Run time  Single Machine Iterations y nm
p P= ~ Distributed Iterations m + 7 + Deg(P)

Distributed Run time

N

Ratio of Time Per Iteration

In our case, concentration states forv € V'

1 —
Fylw) = — Z ({w, mz’,v> - yz’,v>2 —

m
ic|/m]

(w,z) — y)*dp(z,y) = E(w)
\X><Y

J/

Tes?iisk

where p 1s the distribution of the data points.
In large data scenario, all functions are converging to the same quantity — Test Risk.

Main Question:
Can concentration speed-up consensus learning for any network topology ?

Non-parametric Statistical Assumptions

— Main Result: Speed-Up with Consensus Methods Utilising Concentration —

Iterations required decreasing in number of samples 7 up to a point
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Sufficiently K/Irany Samples

7+Deg(P)=0(m)

—> Speed-Up = O(n)

therefore linear speed-up for any network topology.

Cycle | Grid | R. Geom. | Complete | Expander
Speed-Up O(n)|O(n)| O(n) O(n) O(n)
Communication| O(1) |O(1)| O(1) O(n) O(1)
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Detailed Error Decomposition

The Test Error 1s decomposed as follows when m > n2r/v

t/(nm) 1/ (2r+7))2 Y AY+2
Test Error < (nt) 2" + (nt/(nm) ) + " - n (n )2
L /) m(L — o) S
Bias ~ ~ _ ~ ~— _ . ~
Sample Variance Population Network Error  Residual Network Error

Bias and Sample Variance align with Gradient Descent with nm samples [3]
— Fix nt = (nm)L/(2r+7)

Population and Residual Network Error: arise due from averaging steps with the matrix P.

Population Network Error Residual Network Error

Follows standard network term [2] Higher order term

Decreasing with step size 7) From empirical covariance multiplying the

Depends on spectral gap (1 — 02) iterates at each iteration

Utilise concentration and contraction to
control

Due to concentration, decreasing with m
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Small by picking n = (
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Proof Sketch: Population Network Error

Use tools from non-parametric regression [1].
Predictor minimising Test Risk over set of linear predictors x — (w, -) denoted ff7.

Noise: Exists M € (0,00), v € (1,00) so for any ¢ € N we have [ y2ldp(z|y) < vl MY,
Difficulty of estimation problem:

For f € L*(H,px)let L,(f) = [y{(z-)f(x)dpx(z). Exists r > 0 such that 1L, fHl < oo.
Spectrum of covariance operator:

Exists v € (0,1], ¢y > 0 such that Tr(L,(L£, + A) 1) < ey A™7 for all A > 0.

Distributed Gradient Descent

Consider a simple consensus optimisation algorithm [4]:

Communication Matrix: P € R"**"

P=P', Pl1=1 andforv+#w Pyw # O only if (v,w) € E

symmetric doubly stochastic matrix support on the graph

Sparsity pattern matches network

Network Dependence: Let 09 be second largest eigenvalue in magnitude for P.
Scaling O((1 — 05) ') = n? (Cycle), n (Grid/Random Geo.), and 1 (Complete/Expander).

Algorithm: Initalised w , = 0 for v € V/, iterates updated for all v € V'
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Local Communication Local Gradient Descent

Implict Regularisation:
Model Complexity controlled through early stopping (Iterations t) and step size 7.

Speed-Up with Single-Step Consensus Methods

Single-Step methods typically require iterations to scale with inverse spectral gap e.g. [2, 5]

Distributed Iterations = Single Machine Iterations X (1 — 09
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Speed-Up =

nm 7+Deg(P)=0(m)
1 — = On(1l —
m4+ T+ Deg(P)< 72) (n 72))

therefore linear speed-up restricted to well connected topologies.

Cycle | Grid |R. Geom. | Complete | Expander

Speed-Up O(1/n)|O(1)] O(1) O(n) O(n)
Communication| O(1) |O(1)| O(1) O(n) O(1)

Let 7, be conjugate of £, and for £ > 1, let Ny, be r.v. with zero mean concentrating to zero such
that ||(7, + AL Y2N, || < 1/v/\7m w.h.p. Then, with mixing time (* ~ (1 — 7)1
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t* Poorly Mixed terms
Optimised by picking A = (nt*) 1.
Future Work

e Non-parametric setting: extending analysis to non-attainable case » < 1/2 and tighter analysis
on Residual Network Error.

e General Loss Function: Squared loss yields bias/variance decomposition, concentration likely
hold for more general losses.

e Statistics/Communication trade off with sparse/randomised gossip: linear speed-up inde-
pendent of topology — agents randomly gossip at each iteration.

e Stochastic Gradient Descent and mini-batches: random subset of data at each iteration [3].

Speed-Up with Multi-Step Consensus Methods

Multi-Step methods perform multiple communication steps between gradient descent steps [5],
Distributed Iterations = Single Machine [terations

But communication rounds scales with inverse spectral gap.

Cycle| Grid |R. Geom.|Complete | Expander
Speed-Up On)| O(n) | O(n) O(n) O(n)
Communication| O(n) |(O(y/n)| O(y/n) | O(n) O(1)

Therefore trade off between Speed-Up and Communication Cost.
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