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Desiderata for Distributed Machine Learning
Suppose n agents solving a machine learning problem. Properties of an ideal distributed algorithm:

Statistics: retain optimal statistical precision

Runtime: speed-up over single-agent due to parallel computing: ideally factor n

Communication: fixed cost per agent per step, ideally independent of n

Consensus Optimisation for Decentralised Learning
Network of agents G = (V,E), each with data points sampled i.i.d (xi,v, yi,v) perform linear re-
gression. Therefore each agent wishes to minimise with coefficient ωω ∈ Rd

F (ωω) =
1

n

∑
v∈V

1

m

∑
i∈[m]

(〈ωω, xi,v〉 − yi,v)2

︸ ︷︷ ︸
Empirical Loss for Agent v

=
1

n

∑
v∈V

Fv(ωω),︸ ︷︷ ︸
Consensus Optimisation

where Fv is function held by agent v.
Consensus Optimisation

Suppose Fv arbitrary and each agent wants to minimise 1
n

∑
v∈VFv.

→ Agents alternate: local gradient descent steps on Fv and local averaging on network [4]

3 Low communication cost per agent for sparse graphs

3 Robust/Decentralised as no single node responsible for disseminating information

7 Performance depends on network topology [2, 5].

Graphs with smaller spectral gap benefit less from decentralisation

In machine learning Fv are often not arbitrary

In our case, concentration states for v ∈ V

Fv(ωω) =
1

m

∑
i∈[m]

(〈ωω, xi,v〉 − yi,v)2
m→∞−−−−→

∫
X×Y

(〈ωω, x〉 − y)2dρ(x, y)︸ ︷︷ ︸
Test Risk

=: E(ωω)

where ρ is the distribution of the data points.
­­ In large data scenario, all functions are converging to the same quantity→→ Test Risk.

Main Question:
Can concentration speed-up consensus learning for any network topology ?

Non-parametric Statistical Assumptions
Use tools from non-parametric regression [1].
Predictor minimising Test Risk over set of linear predictors x→ 〈ω, ·〉 denoted fH .

Noise: Exists M ∈ (0,∞), ν ∈ (1,∞) so for any ` ∈ N we have
∫
Y y

2`dρ(x|y) ≤ ν`!M `.

Difficulty of estimation problem:

For f ∈ L2(H, ρX) let Lρ(f ) =
∫
X〈x ·〉f (x)dρX(x). Exists r > 0 such that ‖L−rρ fH‖ <∞.

Spectrum of covariance operator:

Exists γ ∈ (0, 1], cγ > 0 such that Tr(Lρ(Lρ + λ)−1) ≤ cγλ
−γ for all λ > 0.

Distributed Gradient Descent
Consider a simple consensus optimisation algorithm [4]:

Communication Matrix: P ∈ Rn×n symmetric doubly stochastic matrix support on the graph

P = P>, P1 = 1 and for v 6= w Pvw 6= 0 only if (v,w) ∈ E︸ ︷︷ ︸
Sparsity pattern matches network

Network Dependence: Let σ2 be second largest eigenvalue in magnitude for P.
Scaling O((1− σ2)−1) = n2 (Cycle), n (Grid/Random Geo.), and 1 (Complete/Expander).
Algorithm: Initalised w1,v = 0 for v ∈ V , iterates updated for all v ∈ V

ωωt+1,v =
∑
w∈V

Pvw︸ ︷︷ ︸
Local Communication

(
ωωt,w − η

1

m

m∑
i=1

(
〈ωωt,w, xi,w〉H − yi,w

)
xi,w︸ ︷︷ ︸

Local Gradient Descent

)

Implict Regularisation:
Model Complexity controlled through early stopping (Iterations t) and step size η.

Optimal Statistical Rate with Implicit Regularisation
Let aforementioned assumptions hold with r ≥ 1/2 and 2r + γ ≥ 2. Fix

t = (nm)1/(2r+γ)︸ ︷︷ ︸
Single-Machine Iterations

×


(
(nm)2r/(2r+γ)

m(1−σ2)γ
)1/γ

∨ 1 if m ≥ n2r/γ

(nm)r/(2r+γ)√
m(1−σ2)

otherwise

η =
κ−2(nm)1/(2r+γ)

t and let m ≥ n
2r+2+γ
2r+γ−2 then ∀v ∈ V :

E[E(ωωt+1,v)]− inf
ω
E(ω)︸ ︷︷ ︸

Test Error

. (nm)−2r/(2r+γ)︸ ︷︷ ︸
Optimal Statistical Rate

Time Model
Gradient computation costs 1 unit of time.
Communication delay costs τ units of time, for some τ > 0.
Distributed time per iteration = m︸︷︷︸

Local Gradient Computation

+ τ + Deg(P )︸ ︷︷ ︸
Communicating/Aggreagating Neighbours Information

Speed-Up defined as

Speed-Up =
Single Machine Run time

Distributed Run time
=

Single Machine Iterations
Distributed Iterations

× nm

m + τ + Deg(P )︸ ︷︷ ︸
Ratio of Time Per Iteration

Main Result: Speed-Up with Consensus Methods Utilising Concentration
Iterations required decreasing in number of samples m up to a point

m ≥ n2r/γ

(1− σ2)2r+γ
∨ n

2r+2+γ
2r+γ−2︸ ︷︷ ︸

Sufficiently Many Samples

=⇒ Distributed Iterations = Single Machine Iterations

=⇒ Speed-Up
τ+Deg(P )=O(m)

= O(n)

therefore linear speed-up for any network topology.

Cycle Grid R. Geom. Complete Expander
Speed-Up O(n) O(n) O(n) O(n) O(n)

Communication O(1) O(1) O(1) O(n) O(1)

Speed-Up with Single-Step Consensus Methods
Single-Step methods typically require iterations to scale with inverse spectral gap e.g. [2, 5]

Distributed Iterations = Single Machine Iterations × (1− σ2)
⇓

Speed-Up =
nm

m + τ + Deg(P )
(1− σ2)

τ+Deg(P )=O(m)
= O(n(1− σ2))

therefore linear speed-up restricted to well connected topologies.

Cycle Grid R. Geom. Complete Expander

Speed-Up O(1/n) O(1) O(1) O(n) O(n)

Communication O(1) O(1) O(1) O(n) O(1)

Speed-Up with Multi-Step Consensus Methods
Multi-Step methods perform multiple communication steps between gradient descent steps [5],

Distributed Iterations = Single Machine Iterations

But communication rounds scales with inverse spectral gap.

Cycle Grid R. Geom. Complete Expander
Speed-Up O(n) O(n) O(n) O(n) O(n)

Communication O(n) O(
√
n) O(

√
n) O(n) O(1)

Therefore trade off between Speed-Up and Communication Cost.

Detailed Error Decomposition
The Test Error is decomposed as follows when m ≥ n2r/γ

Test Error . (ηt)−2r︸ ︷︷ ︸
Bias

+
(ηt/(nm)1/(2r+γ))2

(nm)2r/(2r+γ)︸ ︷︷ ︸
Sample Variance

+
ηγ

m(1− σ2)γ︸ ︷︷ ︸
Population Network Error

+
(ηt)γ+2

m2︸ ︷︷ ︸
Residual Network Error

Bias and Sample Variance align with Gradient Descent with nm samples [3]

=⇒ Fix ηt = (nm)1/(2r+γ) .

Population and Residual Network Error: arise due from averaging steps with the matrix P.

Population Network Error
Follows standard network term [2]

Decreasing with step size η
Depends on spectral gap (1− σ2)

Due to concentration, decreasing with m

Small by picking η =
(

m(1−σ2)γ
(nm)2r/(2r+γ)

)1/γ
∨1.

Residual Network Error
Higher order term

From empirical covariance multiplying the
iterates at each iteration

Utilise concentration and contraction to
control

=⇒ require m ≥ n
2r+2+γ
2r+γ−2.

Proof Sketch: Population Network Error
Let Tρ be conjugate of Lρ and for k ≥ 1, let Nk be r.v. with zero mean concentrating to zero such
that ‖(Tρ + λI)−1/2Nk‖ . 1/

√
λγm w.h.p. Then, with mixing time t? ' (1− σ2)−1

E[(Pop. Net. Error)] ≤ E
[( t∑

k=1

σt−k+12 η‖T 1/2
ρ (I − ηTρ)t−kNk‖

)2]
.

1

mλγ

( t∑
k=t−t?︸ ︷︷ ︸

t? Poorly Mixed terms

σt−k+12 η ‖T 1/2
ρ (I − ηTρ)t−k(Tρ + λI)1/2‖︸ ︷︷ ︸
Contraction =⇒ O(

√
λ/(η(t−k)))

)2
.

log(t?) + ληt?

mλγ

Optimised by picking λ = (ηt?)−1.

Future Work
•Non-parametric setting: extending analysis to non-attainable case r ≤ 1/2 and tighter analysis

on Residual Network Error.

•General Loss Function: Squared loss yields bias/variance decomposition, concentration likely
hold for more general losses.

• Statistics/Communication trade off with sparse/randomised gossip: linear speed-up inde-
pendent of topology→ agents randomly gossip at each iteration.

• Stochastic Gradient Descent and mini-batches: random subset of data at each iteration [3].
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