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1. Min-Sum

Min-Sum is a distributed algorithm to optimize a sum of functions.
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The algorithm is exact on trees, it corresponds to dynamic programming.
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» Messages can be exchanged on any graphs, even with loops.

= In general, convergence and correctness are not guaranteed.

2. Min-Sum Splitting

= Min-Sum applied to a reparametrization of the objective function.”
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Min-Sum Splitting
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Q. Can we tune directionality to get convergence,
correctness, and possibly faster convergence rate?

3. Consensus: Network Averaging

Consensus is a fundamental primitive in distributed optimization.
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= Classical algorithms are linear systems: x'”’ = b and x'” = Wx'""V.
« Necessary and sufficient®: W1=1,1"W =17, lim W' —11"/n.
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= Common choice is Metropolis-Hastings: WMH 1= di/Qamay) if i =]
0 otherwise

» Rate of convergence is controlled by p(W—11"/n).

. min{p(W—llT/n) : W symmetrical} is a convex problem (SDP).
= Optimal matrix yields slow rate O(D?), achieved by W,
» Lower-bound: Q (D), where D is graph diameter.

= To get fast rates, two approaches have been developed independently:

Lifted Markov chains® and multi-step gradient methods'.

Q. Can we get fast rates with Min-Sum?

4. Min-Sum Splitting for Consensus

Min-Sum does not converge.> Min-Sum Splitting does converge.
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ALGORITHM 1. Min-Sum Splitting for Consensus

Input: Initial messages RY ¥ symmetric ' e RV *".

(v,w)’ (v w)’
for se{l,...,t} do
CRY=1+KRSY;  FY9=h+ KpGY;
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Output: x, 113 o T B veV.

KEY: Properly tune the directionality of messages.
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5. Accelerated rate of convergence
« Let W eR"*" be symmetric, W1 =1 and Oy = p(W—llT/n) <1.
= Let ['=7pyW, with y:2/(1+\/1—p%‘,).

= Define: K:=( ", ¢), K®: == (o 0w 0bur )-
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Asymptotic convergence rate:

k= p(K — K= lim [|(K - k)" = |V < gy <1,

n— 00 \ 1+4/1-p%,

and 31/1/(1 - pw) <1/(1 - px) < +/1/(A1 - pw).

» Same rate as shift-register methods.?

= Asymptotic convergence time O(Dlog D) for cycles and grids.

KEY: Tune directionality using global information.

6. Contributions

= Directionality embedded in Belief Propagation protocols can
be tuned to yield convergence and accelerated rates.

= Connection of Min-Sum schemes with lifted Markov chains tech-
niques and multi-step gradient methods:
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= New proof technique based on the introduction of an auxiliary process

to track the evolution of Min-Sum schemes on the nodes.

= Quasi-optimal rate O(DlogD) for the network averaging problem

in cycles and grids, improving previous rates for Min-Sum with soft
barrier (Consensus Propagation?®) (0(D?“~Y/4) for d/2 dim. grids).
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