
Accelerated Consensus via Min-Sum Splitting
Patrick Rebeschini1 and Sekhar Tatikonda2

1patrick.rebeschini@stats.ox.ac.uk, University of Oxford 2sekhar.tatikonda@yale.edu, Yale University

1. Min-Sum
Min-Sum is a distributed algorithm to optimize a sum of functions.

min
x

∑
a

fa(x∂a)

The algorithm is exact on trees, it corresponds to dynamic programming.
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min
x

(
fa(x1, x2, x3)+ fb(x1, x4, x5)+ fc(x1, x6, x7)

)
= min

x1

(
min
x2,x3

fa(x1, x2, x3)︸ ︷︷ ︸
µa→1(x1)

+min
x4,x5

fb(x1, x4, x5)︸ ︷︷ ︸
µb→1(x1)

+min
x6,x7

fc(x1, x6, x7)︸ ︷︷ ︸
µc→1(x1)

)

Min-Sum

i a µ(t )
i→a(xi ) = fi (xi )+

∑
b∈∂i \a

µ(t−1)
b→i (xi )

a i µ(t )
a→i (xi ) = min

x∂a\i

( ∑
j∈∂a\i

µ(t−1)
j→a (x j )+ fa(x∂a\i , xi )

)

•Messages can be exchanged on any graphs, even with loops.
• In general, convergence and correctness are not guaranteed.

2. Min-Sum Splitting
= Min-Sum applied to a reparametrization of the objective function.4

min
x

∑
a

Γa∑
k=1

fa,k(x∂a)

Γa
fa,k := fa

Min-Sum Splitting

i a µ(t )
i→a(xi ) = fi (xi )+

∑
b∈∂i \a

Γbµ
(t−1)
b→i (xi )+ (Γa −1)µ(t−1)

a→i (xi )

a i µ(t )
a→i (xi ) = min

x∂a\i

( ∑
j∈∂a\i

µ(t−1)
j→a (x j )+ fa(x∂a\i , xi )

Γa

)

Q. Can we tune directionality to get convergence,
correctness, and possibly faster convergence rate?

3. Consensus: Network Averaging
Consensus is a fundamental primitive in distributed optimization.
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min.
∑
v∈V

(xv−bv)2

sub. to xv=xw , {v, w} ∈ E

•Classical algorithms are linear systems: x(0) = b and x(t ) =W x(t−1).
•Necessary and sufficient6: W 1 = 1,1T W = 1T , lim

t→∞W t → 11T /n.

•Common choice is Metropolis-Hastings: W M H
i j =

{
1/(2dmax) if {i , j } ∈ E

1−di /(2dmax) if i = j

0 otherwise

•Rate of convergence is controlled by ρ(W −11T /n).
• min{ρ(W −11T /n) : W symmetrical} is a convex problem (SDP).
•Optimal matrix yields slow rate O(D2), achieved by W M H .
•Lower-bound: Ω(D), where D is graph diameter.
•To get fast rates, two approaches have been developed independently:

Lifted Markov chains5 and multi-step gradient methods1.

Q. Can we get fast rates with Min-Sum?

4. Min-Sum Splitting for Consensus
Min-Sum does not converge.3 Min-Sum Splitting does converge.

ĥ(w,v) := bw K̂(w,v)(z,u):=
{
Γzw if u = w, z ∈N(w) \ {v}

Γv w −1 if u = w, z = v

0 otherwise

ALGORITHM 1. Min-Sum Splitting for Consensus

Input: Initial messages R (0)
(v,w),r (0)

(v,w); symmetric Γ ∈RV ×V .
for s ∈ {1, . . . , t } do

R̂ (s) = 1+ K̂ R̂ (s−1); r̂ (s) = ĥ + K̂ r̂ (s−1);

Output: x(t )
v := bv+∑

w∈N(v)Γw v r̂ (t )
w v

1+∑
w∈N(v)Γw vR̂ (t )

w v
, v ∈V .

KEY: Properly tune the directionality of messages.
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Min-Sum Splitting

5. Accelerated rate of convergence
Theorem

•Let W ∈RV ×V be symmetric, W 1 = 1 and ρW := ρ(W −11T /n) < 1.
•Let Γ= γW , with γ= 2/(1+

√
1−ρ2

W ).
•Define: K := (

γW I
(1−γ)I 0

)
, K ∞ := 1

(2−γ)n

(
11T 11T

(1−γ)11T (1−γ)11T

)
.

Then, ‖x(t )− b̄1‖ ≤ 4
p

2|V |
2−γ ‖(K −K ∞)t‖ , where b̄ := 1

|V |
∑
v∈V

bv.

Asymptotic convergence rate:
ρK := ρ(K −K ∞) = lim

n→∞‖(K −K ∞)n‖1/n =
√√√√1−

p
1−ρ2

W

1+
p

1−ρ2
W

< ρW < 1,

and 1
2

√
1/(1−ρW ) ≤ 1/(1−ρK ) ≤√

1/(1−ρW ).

•Same rate as shift-register methods.2

•Asymptotic convergence time O(D logD) for cycles and grids.
KEY: Tune directionality using global information.

6. Contributions
•Directionality embedded in Belief Propagation protocols can

be tuned to yield convergence and accelerated rates.
•Connection of Min-Sum schemes with lifted Markov chains tech-

niques and multi-step gradient methods:(
x(t )

x(t−1)

)
= K

(
x(t−1)

x(t−2)

)
•New proof technique based on the introduction of an auxiliary process
to track the evolution of Min-Sum schemes on the nodes.

•Quasi-optimal rate O(D logD) for the network averaging problem
in cycles and grids, improving previous rates for Min-Sum with soft
barrier (Consensus Propagation3) (Θ(D2(d−1)/d) for d/2 dim. grids).
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