
Statistical Programming Worksheet 6

1. Numbers. Dr. Winkel has 200 square tiles with which to decorate a wall of the kitchen in
the Department of Statistics. 20 of the tiles are red, 30 blue, and the rest are white. Write
down a formula for the number of distinct patterns he can create.

How many digits does this number have?

How many digits does 1000! have?

2. Metropolis Hastings. Suppose that X1, . . . , Xn
i.i.d.∼ Gamma(α, β), and let α and β have

independent Exponential(1) priors.

(a) Write a function to evaluate the log-posterior of α and β given a vector of data x. The
function should have arguments x, alpha and beta.

(b) Write a function to perform a single Metropolis-Hastings step to explore the posterior
above. Use a proposal

α′ = α+ σZ1 β′ = β + σZ2

for Z1, Z2 independent standard normals (i.e. q(α′ |α) ∼ N(α, σ2).) It should take as
arguments x, alpha, beta and sigma.

(c) Write a function to run the Metropolis-Hastings algorithm for N steps and return an
N × 2 matrix of the parameter values. It should take as input the data x, number of
steps N, starting values alpha and beta, and proposal standard deviation sigma.

(d) The file airpol.txt (on the class website) contains daily PM2.5 readings taken from
various measuring stations around Seattle during 2015. Read in the data as a vector and
plot it in a histogram.

x <- scan("airpol.txt") # note use of scan(), not read.table()

hist(x, breaks = 100, freq = FALSE)

Model the data as i.i.d. Gamma distributed observations using the model above. Run
your Metropolis-Hastings algorithm for 5,000 steps with starting point α = 1, β = 1.
Plot your output with plot() and investigate different values of σ ∈ {0.01, 0.02, 0.05}.

(e) Find the posterior means for α and β. Plot the density of the corresponding Gamma
distribution over the histogram of the data.
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3. Image Reconstruction. Let the n × n matrix Y = (yij) of ±1s follow the distribution of
the Ising model with parameter θ, so that

π(Y ) ∝ exp

θ ∑
(i,j)∼(i′j′)

yijyi′j′


where (i, j) ∼ (i′j′) if either i = i′ ± 1 and j = j′, or vice versa (i.e. they differ by exactly
one column or one row, but not both).

(a) Let Ỹ = Y except that ỹij = 1− yij (so they are equal except for a single entry). Show
that

log π(Ỹ )− log π(Y ) = θ(di,j − 2ai,j)

where di,j is the number of pixels adjacent to i, j, and ai,j is the number of adjacent
pixels which have the same value as yij .

We will construct a Metropolis-Hasting algorithm to target π.

(b) First, look at the function mh step() in the file MHcode.R on the website. The function
performs one M-H step by proposing to flip Y[r,c].

Complete the function by replacing the questions marks with code to calculate logα.
Comment the code to show you understand what the rest of the function is doing.

(c) Now create a function with arguments n, N and theta which creates an n × n matrix
with random entries 0 or 1, and then performs N M-H steps by calling mh step(). When
finished, it should return the state of the chain.

(d) Run the function for n = 50 and values θ = 0.2, 0.5, 0.8 (you’ll probably need N > 105

to get reasonable convergence). You can plot your solution using the image() function:

> out <- mh_ising(50, theta=0.5, N=1e5)

> image(out)

(e) Consider an n× n matrix X = (xij) of independent Bernoulli random variables, where

P (xij = 1) =

{
1− p if yij = 0
p if yij = 1

for an unknown matrix of numbers Y = (yij). Defining Ỹ as in (a), show that

logL(Ỹ ;X)− logL(Y ;X) =

{
+ log p

1−p if yij 6= xij
− log p

1−p if yij = xij
,

where L(Y ;X) is the likelihood for the unknown parameter Y given X.

(f) Read in the data and look at it:

X <- as.matrix(read.table("image_noisy.txt"))

image(X)

Modify your previous M-H functions to accept a matrix X of data as an argument, and
to include the change in the likelihood in your acceptance ratio α. Have the function
return the estimated posterior mean of the chain (i.e. the average position of each pixel
over the iterations).

Run the chain for a million iterations, setting p = 2
3 and θ = 0.8, and plot the results.
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