Simulation - Lectures - Part II

Robert Davies - (adapted from slides from Julien Berestycki and others)

Part A Simulation and Statistical Programming

Hilary Term 2020
Outline

Importance Sampling

- Unbiased importance sampling
- Normalised Importance Sampling
Outline

Importance Sampling

Unbiased importance sampling

Normalised Importance Sampling
Importance Sampling

- We want to estimate

$$\theta = \mathbb{E}(\phi(X))$$

where X is a rv with pdf or pmf p and $\phi : \Omega \to \mathbb{R}$.

- The Monte Carlo estimator uses samples from p to estimate θ, but this choice is in general suboptimal.

- Importance sampling uses samples from another distribution q, called importance or proposal distribution, and reweight them.

- Importance sampling (IS) can be thought, among other things, as a strategy for recycling samples.

- It is also useful when we need to make an accurate estimate of the probability that a random variable exceeds some very high threshold.

- In this context it is referred to as a variance reduction technique.
Importance Sampling Identity

Let $Y \sim q$ and $X \sim p$ be continuous or discrete rv on Ω. Assume $p(x) > 0 \Rightarrow q(x) > 0$, then for any function $\phi : \Omega \rightarrow \mathbb{R}$ we have

$$E_p(\phi(X)) = E_q(\phi(Y)w(Y))$$

where $w : \Omega \rightarrow \mathbb{R}^+$ is the importance weight function

$$w(x) = \frac{p(x)}{q(x)}.$$
Importance Sampling Identity

Proof: We have

\[\mathbb{E}_p(\phi(X)) = \int_\Omega \phi(x)p(x)dx \]
\[= \int_\Omega \phi(x)\frac{p(x)}{q(x)}q(x)dx \]
\[= \int_\Omega \phi(x)w(x)q(x)dx \]
\[= \mathbb{E}_q(\phi(Y)w(Y)). \]

Similar proof holds in the discrete case.
Importance Sampling Estimator

Definition

Let q and p be pdfs or pmfs on Ω. Assume $p(x)\phi(x) \neq 0 \Rightarrow q(x) > 0$. Let $\phi : \Omega \rightarrow \mathbb{R}$ and $X \sim p$ such that $\theta = \mathbb{E}_p(\phi(X))$ exists. Let $Y_1, ..., Y_n$ be a sample of independent random variables distributed according to q. The importance sampling estimator is defined as

$$\hat{\theta}^{IS}_n = \frac{1}{n} \sum_{i=1}^{n} \phi(Y_i)w(Y_i).$$

Properties

The IS estimator is

- **Unbiased**: $\mathbb{E}[\hat{\theta}^{IS}_n] = \theta$
- **(Weakly and strongly) consistent**: $\hat{\theta}^{IS}_n \longrightarrow \theta$ a.s. as $n \rightarrow \infty$.
Proof.

\[
\mathbb{E}[\hat{\theta}_{IS}^n] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(\phi(Y_i)w(Y_i)) \\
= \mathbb{E}(\phi(Y_1)w(Y_1)) \\
= \mathbb{E}(\phi(X)) = \theta
\]

Let \(Z_i = \phi(Y_i)w(Y_i) \). \(Z_1, \ldots, Z_n \) are iid with mean \(\mathbb{E}(Z_i) = \mathbb{E}(\phi(Y_i)w(Y_i)) = \theta \). From the strong law of large numbers

\[
\frac{1}{n} \sum_{i=1}^{n} Z_i \rightarrow \theta \quad \text{a.s. as } n \rightarrow \infty
\]
Target and Proposal Distributions

- **Target:** $p(x) = \frac{1}{2} e^{-|x|}$
- **Proposal:** $q(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$
- **Weight function:** $w(x) = \sqrt{\frac{\pi}{2}} e^{-|x|+\frac{x^2}{2}}$
Target and Proposal Distributions

- **Target:** \(p(x) = \frac{1}{2} e^{-|x|} \)
- **Proposal:** \(q(x) = \frac{1}{\pi(1 + x^2)} \)
- **Weight function:** \(w(x) = \frac{\pi}{2} \left(1 + x^2 \right) e^{-|x|} \)
Example: Gamma Distribution

Say we have simulated $Y_i \sim \text{Gamma}(a, b)$ and we want to estimate $\mathbb{E}_p(\phi(X))$ where $X \sim \text{Gamma}(\alpha, \beta)$.

Recall that the Gamma(α, β) density is

$$p(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x)$$

so

$$w(x) = \frac{p(x)}{q(x)} = \frac{\Gamma(a) \beta^\alpha}{\Gamma(\alpha) b^a} x^{\alpha-a} e^{-(\beta-b)x}$$

Hence

$$\hat{\theta}_{n}^{\text{IS}} = \frac{\Gamma(a) \beta^\alpha}{\Gamma(\alpha) b^a} \frac{1}{n} \sum_{i=1}^{n} \phi(Y_i) \ Y_i^{\alpha-a} e^{- (\beta-b) Y_i}$$

is an unbiased and consistent estimate of $\mathbb{E}_p(\phi(X))$.
Proposition. Assume $\theta = \mathbb{E}_p(\phi(X))$ and $\mathbb{E}_p(w(X)\phi^2(X))$ are finite. Then $\hat{\theta}_{n}^{\text{IS}}$ satisfies

$$
\mathbb{E} \left(\left(\hat{\theta}_{n}^{\text{IS}} - \theta \right)^2 \right) = \mathbb{V} \left(\hat{\theta}_{n}^{\text{IS}} \right) = \frac{1}{n} \mathbb{V}_q (w(Y_1)\phi(Y_1)) \\
= \frac{1}{n} \left(\mathbb{E}_q \left(\frac{p^2(Y_1)}{q^2(Y_1)} \phi^2(Y_1) \right) - \mathbb{E}_q \left(\frac{p(Y_1)}{q(Y_1)} \phi(Y_1) \right)^2 \right) \\
= \frac{1}{n} \left(\mathbb{E}_p \left(w(X)\phi^2(X) \right) - \theta^2 \right).
$$

Each time we do IS we should check that this variance is finite, otherwise our estimates are somewhat untrustworthy! We check $\mathbb{E}_p(w(X)\phi^2(X))$ is finite.
Variance of the Importance Sampling Estimator

- Target: \(p(x) = \frac{1}{2} e^{-|x|} \)
- Proposal: \(q(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \)
- \(w(x) = \sqrt{\frac{\pi}{2}} e^{-|x|+\frac{x^2}{2}} \), \(\phi(x) = x \)
- \(\mathbb{E}_p(w(X)\phi^2(X)) = \infty \)
Variance of the Importance Sampling Estimator

- **Target:** \(p(x) = \frac{1}{2} e^{-|x|} \)
- **Proposal:** \(q(x) = \frac{1}{\pi (1 + x^2)} \)
- \(w(x) = \frac{\pi}{2} (1 + x^2) e^{-|x|}, \phi(x) = x \)
- \(\mathbb{E}_p(w(X)\phi^2(X)) < \infty \)
If $\nabla_p(\phi(X))$ is finite, a sufficient condition is that w is a bounded function: there is M such that $w(x) = \frac{p(x)}{q(x)} \leq M$ for all $x \in \Omega$.

Note that this is the same condition as for rejection sampling,

For IS it is enough just for M to exist—we do not have to work out its value.

Proof:

$$\mathbb{E}_p(w(X)\phi^2(X)) \leq M\mathbb{E}_p(\phi^2(X)) < \infty$$

as $\nabla_p(\phi(X)) < \infty$.

Part A Simulation. HT 2020. R. Davies. 15 / 38
Example: Gamma Distribution

- Let us check that the variance of \(\hat{\theta}_n^{\text{IS}} \) in previous Example is finite if \(\theta = \mathbb{E}_p(\phi(X)) \) and \(\nabla_p(\phi(X)) \) are finite.
- It is enough to check that \(\mathbb{E}_p\left(w(Y_1)\phi^2(Y_1) \right) \) is finite.
- The normalisation constants are finite so we can ignore those, and begin with

\[
w(x)\phi^2(x) \propto x^{\alpha-a}e^{-(\beta-b)X} \phi^2(x).
\]

- The expectation of interest is

\[
\mathbb{E}_p\left(w(X)\phi^2(X) \right) \propto \mathbb{E}_p\left(X^{\alpha-a}e^{-(\beta-b)X} \phi^2(X) \right)
\]

\[
= \int_0^\infty p(x) x^{\alpha-a} \exp(-(\beta-b)x))\phi^2(x) \, dx
\]

\[
\leq M \int_0^\infty p(x)\phi(x)^2 \, dx = M\mathbb{E}_p(\phi^2(X)).
\]

where \(M = \max_{x>0} x^{\alpha-a} \exp(-(\beta-b)x) \) is finite if \(a < \alpha \) and \(b < \beta \) (see rejection sampling section).
Since $\theta = \mathbb{E}_p(\phi(X))$ and $\nabla \mathbb{V}_p(\phi(X))$ are finite, we have $\mathbb{E}_p(\phi^2(X)) < \infty$ if these conditions on a, b are satisfied. If not, we cannot conclude as it depends on ϕ.

These same (sufficient) conditions apply to our rejection sampler for Gamma(α, β).
Choice of the Importance Sampling Distribution

- While p is given, q needs to cover $p\phi$ (i.e. $p(x)\phi(x) \neq 0 \Rightarrow q(x) > 0$) and be simple to sample.

- The requirement $\nabla \left(\hat{\theta}_{IS}^n \right) < \infty$ further constrains our choice: we need $\mathbb{E}_p \left(w(X)\phi^2(X) \right) < \infty$.

- If $\nabla_p(\phi(X))$ is known finite then, it may be easy to get a sufficient condition for $\mathbb{E}_p \left(w(X)\phi^2(X) \right) < \infty$; e.g. $w(x) \leq M$. Further analysis will depend on ϕ.

What is the choice q_{opt} of q that actually minimizes the variance of the IS estimator? Consider for now $\phi : \Omega \rightarrow [0, \infty)$ then

$$q_{\text{opt}}(x) = \frac{p(x)\phi(x)}{\mathbb{E}_p(\phi(X))} \Rightarrow \mathbb{V}(\hat{\theta}^\text{IS}_n) = 0.$$

This optimal zero-variance estimator cannot be implemented as

$$w(x) = \frac{p(x)}{q_{\text{opt}}(x)} = \frac{\mathbb{E}_p(\phi(X))}{\phi(x)}$$

where $\mathbb{E}_p(\phi(X))$ is the quantity we are trying to estimate! This can however be used as a guideline to select q.
Choice of the Importance Sampling Distribution

For general function $\phi : \Omega \rightarrow \mathbb{R}$, the optimal importance distribution is

$$q_{\text{opt}}(x) = \frac{p(x)|\phi(x)|}{\mathbb{E}_p(|\phi(X)|)}$$

with variance

$$\mathbb{V}(\hat{\theta}_{n IS}) = \frac{1}{n} \left(\mathbb{E}_p(|\phi(X)|)^2 - \theta^2 \right).$$
Choice of the Importance Sampling Distribution

▶ Proof:

\[\mathbb{E}_p (w(X) \phi^2(X)) = \mathbb{E}_q \left(\frac{p^2(Y_1)}{q^2(Y_1)} \phi^2(Y_1) \right) \]

\[= \mathbb{V}_q \left(\frac{p(Y_1)}{q(Y_1)} |\phi(Y_1)| \right) + \left(\mathbb{E}_q \left(\frac{p(Y_1)}{q(Y_1)} |\phi(Y_1)| \right) \right)^2 \]

\[\geq \left(\mathbb{E}_q \left(\frac{p(Y_1)}{q(Y_1)} |\phi(Y_1)| \right) \right)^2 \]

\[= (\mathbb{E}_p (|\phi(X)|))^2 \]

where the lower bound does not depend on \(q \). This lower bound is achieved for \(q = q_{opt} \)

\[\mathbb{E}_p \left(\frac{p(X)}{q_{opt}(X)} \phi^2(X) \right) = (\mathbb{E}_p (|\phi(X)|))^2 \]
One important class of applications of IS is to problems in which we estimate the probability for a rare event.

In such scenarios, we may be able to sample from p directly but this does not help us. If, for example, $X \sim p$ with $\mathbb{P}(X > x_0) = \mathbb{E}_p(\mathbb{I}[X > x_0]) = \theta$ say, with $\theta \ll 1$, we may not get any samples $X_i > x_0$ and our estimate $\hat{\theta}_n = \sum_i \mathbb{I}(X_i > x_0)/n$ is simply zero.

Generally, we have

$$\mathbb{E} \left(\hat{\theta}_n \right) = \theta, \quad \mathbb{V} \left(\hat{\theta}_n \right) = \frac{\theta(1 - \theta)}{n}$$

but the relative variance

$$\frac{\mathbb{V} \left(\hat{\theta}_n \right)}{\theta^2} = \frac{(1 - \theta)}{\theta n} \xrightarrow{\theta \to 0} \infty.$$

By using IS, we can actually reduce the variance of our estimator.
Importance Sampling for Rare Event Estimation

- Let $X \sim \mathcal{N}(\mu, \sigma^2)$ be a scalar normal random variable and we want to estimate $\theta = \mathbb{P}(X > x_0)$ for some $x_0 \gg \mu + 3\sigma$.

- If p is the pdf of X then

$$q(x) = \frac{p(x)e^{tx}}{M_p(t)}$$

is called an exponentially tilted version of p where $M_p(t) = \mathbb{E}_p(e^{tX})$ is the moment generating function of X.

- For many standard pdfs, the exponentially tilted pdf is in the same family as p, with different parameters

- For p the pdf of a Gaussian variable with mean μ and variance σ^2,

$$q(x) \propto e^{-(x-\mu)^2/2\sigma^2} e^{tx} = e^{-(x-\mu-t\sigma^2)^2/2\sigma^2} e^{\mu t + t^2 \sigma^2/2}$$

so we have

$$q(x) = \mathcal{N}(x; \mu + t\sigma^2, \sigma^2), \quad M_p(t) = e^{\mu t + t^2 \sigma^2/2}.$$
The IS weight function is \(p(x)/q(x) = e^{-tx}M_p(t) \) so

\[
w(x) = e^{-t(x-\mu-t\sigma^2/2)}.
\]

We take samples \(Y_i \sim \mathcal{N}(\mu + t\sigma^2, \sigma^2) \), and form our IS estimator for \(\theta = \mathbb{P}(X > x_0) \)

\[
\hat{\theta}_n^{IS} = \frac{1}{n} \sum_{i=1}^{n} w(Y_i) I(Y_i > x_0)
\]

since \(\phi(Y_i) = I(Y_i > x_0) \).

We have not said how to choose \(t \). The point here is that we want samples in the region of interest. We choose the mean of the tilted distribution so that it equals \(x_0 \), this ensure we have samples in the region of interest; that is \(\mu + t\sigma^2 = x_0 \), or \(t = (x_0 - \mu)/\sigma^2 \).
Original and Exponentially Tilted Densities

- $p(x) = N(x; 0, 1)$ and $q(x) = N(x; t, 1)$, $x_0 = t = 4$
Optimal Tilted Densities

- We selected t such that $\mu + t\sigma^2 = x_0$ somewhat heuristically.
- In practice, we might be interested in selecting the t value which minimizes the variance of $\hat{\theta}_{IS}^n$ where

$$\nabla(\hat{\theta}_{IS}^n) = \frac{1}{n} \left(\mathbb{E}_p (w(X)\mathbb{I}(X > x_0)) - \mathbb{E}_p (\mathbb{I}(X > x_0))^2 \right)$$

$$= \frac{1}{n} \left(\mathbb{E}_p (w(X)\mathbb{I}(X > x_0)) - \theta^2 \right).$$

- Hence we need to minimize $\mathbb{E}_p (w(X)\mathbb{I}(X > x_0))$ w.r.t t where

$$\mathbb{E}_p (w(X)\mathbb{I}(X > x_0)) = \int_{x_0}^{\infty} p(x)e^{-t(x-\mu-t\sigma^2/2)}dx$$

$$= M_p(t) \int_{x_0}^{\infty} p(x)e^{-tx}dx$$
Optimal Tilted Densities

- Relative variance $\frac{\nu(\hat{\theta}_1^{IS})}{\theta^2}$ of the IS estimators for different values of t
Importance Sampling in High Dimension

- Purely for illustration, consider that we want to estimate

\[\theta = \mathbb{E}_p(1) = 1 \]

where the target pdf is a \(d\)-dimensional Gaussian

\[p(x_1, \ldots, x_d) = (2\pi)^{-d/2} \exp \left(-\frac{1}{2} \sum_{k=1}^{d} x_k^2 \right). \]

- Consider the proposal density

\[q(x_1, \ldots, x_d) = (2\pi\sigma^2)^{-d/2} \exp \left(-\frac{1}{2\sigma^2} \sum_{k=1}^{d} x_k^2 \right). \]

- We have

\[w(x) = \frac{p(x_1, \ldots, x_d)}{q(x_1, \ldots, x_d)} = \sigma^d \exp \left(-\frac{1}{2} (1 - \sigma^{-2}) \sum_{k=1}^{d} x_k^2 \right). \]
For $Y_i \sim q$, $\hat{\theta}_{IS}^n = \frac{1}{n} \sum_{i=1}^{n} w(Y_i)$ is a consistent estimate of $\theta = 1$.

The estimator has finite variance for $\sigma^2 > \frac{1}{2}$, with

$$\mathbb{V} \left(\hat{\theta}_{IS}^n \right) = \frac{\mathbb{V}_q (w(Y_1))}{n} = \frac{1}{n} \left(\left(\frac{\sigma^4}{2\sigma^2 - 1} \right)^{d/2} - 1 \right)$$

with $\frac{\sigma^4}{2\sigma^2 - 1} > 1$ for $\sigma^2 > \frac{1}{2}$, $\sigma^2 \neq 1$.

Variance of the IS estimator grows exponentially with the dimension d.
Outline

Importance Sampling
 Unbiased importance sampling
 Normalised Importance Sampling
Normalised Importance Sampling

- In most practical scenarios,
 \[p(x) = \frac{\tilde{p}(x)}{Z_p} \text{ and } q(x) = \frac{\tilde{q}(x)}{Z_q} \]
 where \(\tilde{p}(x), \tilde{q}(x) \) are known but \(Z_p = \int_{\Omega} \tilde{p}(x) dx \), \(Z_q = \int_{\Omega} \tilde{q}(x) dx \) are unknown or difficult to compute.

- The previous IS estimator is not applicable as it requires evaluating \(w(x) = \frac{p(x)}{q(x)} \).

- An alternative IS estimator can be proposed based on the following alternative IS identity.

- **Proposition.** Let \(Y \sim q \) and \(X \sim p \) be continuous or discrete rv on \(\Omega \). Assume \(p(x) > 0 \Rightarrow q(x) > 0 \), then for any function \(\phi : \Omega \rightarrow \mathbb{R} \) we have
 \[
 \mathbb{E}_p(\phi(X)) = \frac{\mathbb{E}_q(\phi(Y)\tilde{w}(Y))}{\mathbb{E}_q(\tilde{w}(Y))}
 \]
 where \(\tilde{w} : \Omega \rightarrow \mathbb{R}^+ \) is the importance weight function
 \[
 \tilde{w}(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}.
 \]
Normalised Importance Sampling

Proof: Observe that

\[
\mathbb{E}_{q}(\tilde{w}(Y)) = \int \frac{\tilde{p}(x)}{\tilde{q}(x)} q(x) \, dx
\]

\[
= \int \frac{p(x)}{q(x)} \frac{Z_q}{Z_p} q(x) \, dx
\]

\[
= \frac{Z_q}{Z_p}
\]

and noting that \(\tilde{w}/\frac{Z_q}{Z_p} = w\) we have that

\[
\frac{\mathbb{E}_{q}(\phi(Y)\tilde{w}(Y))}{\mathbb{E}_{q}(\tilde{w}(Y))} = \mathbb{E}_{q}(\phi(Y)w(Y))
\]

Remark: Even if we are interested in a simple function \(\phi\), we do need \(p(x) > 0 \Rightarrow q(x) > 0\) to hold instead of \(p(x)\phi(x) \neq 0 \Rightarrow q(x) > 0\) for the previous IS identity.
Normalised Importance Sampling

Proof: We have

\[\mathbb{E}_p(\phi(X)) = \int_\Omega \phi(x) p(x) \, dx \]

\[= \frac{\int_\Omega \phi(x) \frac{p(x)}{q(x)} q(x) \, dx}{\int_\Omega \frac{p(x)}{q(x)} q(x) \, dx} \]

\[= \frac{\int_\Omega \phi(x) \tilde{w}(x) q(x) \, dx}{\int_\Omega \tilde{w}(x) q(x) \, dx} \]

\[= \frac{\mathbb{E}_q(\phi(Y) \tilde{w}(Y))}{\mathbb{E}_q(\tilde{w}(Y))}. \]

Remark: Even if we are interested in a simple function \(\phi \), we do need \(p(x) > 0 \Rightarrow q(x) > 0 \) to hold instead of \(p(x)\phi(x) \neq 0 \Rightarrow q(x) > 0 \) for the previous IS identity.
Normalised Importance Sampling Pseudocode

1. **Inputs:**
 - Function to draw samples from q
 - Function $\tilde{w}(x) = \tilde{p}(x)/\tilde{q}(x)$
 - Function ϕ
 - Number of samples n

2. **For** $i = 1, \ldots, n$:
 2.1 Draw $y_i \sim q$.
 2.2 Compute $\tilde{w}_i = \tilde{w}(y_i)$.

3. **Return**

\[
\frac{\sum_{i=1}^{n} \tilde{w}_i \phi(y_i)}{\sum_{i=1}^{n} \tilde{w}_i}.
\]
Normalised Importance Sampling Estimator

Proposition

Let \(q \) and \(p \) be pdf or pmf on \(\Omega \), with \(q(x) \propto \tilde{q}(x) \) and \(p(x) \propto \tilde{p}(x) \).

Assume \(p(x) > 0 \Rightarrow q(x) > 0 \). Let \(X \sim p \), and \(\phi : \Omega \to \mathbb{R} \) such that \(\theta = \mathbb{E}_p(\phi(X)) \) exists. Let \(Y_1, \ldots, Y_n \) be a sample of independent random variables distributed according to \(q \) then the normalized importance sampling estimator, defined by

\[
\hat{\theta}_{\text{NIS}}^n = \frac{1}{n} \sum_{i=1}^{n} \frac{\phi(Y_i) \tilde{w}(Y_i)}{\frac{1}{n} \sum_{i=1}^{n} \tilde{w}(Y_i)} = \frac{\sum_{i=1}^{n} \phi(Y_i) \tilde{w}(Y_i)}{\sum_{i=1}^{n} \tilde{w}(Y_i)},
\]

with \(\tilde{w}(x) = \frac{\tilde{p}(x)}{q(x)} \).

- This estimator is consistent.

- Remark: It is easy to show that \(\hat{A}_n = \frac{1}{n} \sum_{i=1}^{n} \phi(Y_i) \tilde{w}(Y_i) \) (resp. \(\hat{B}_n = \frac{1}{n} \sum_{i=1}^{n} \tilde{w}(Y_i) \)) is an unbiased and consistent estimator of \(A = \mathbb{E}_q(\phi(Y) \tilde{w}(Y)) \) (resp. \(B = \mathbb{E}_q(\tilde{w}(Y))) \). However \(\hat{\theta}_{\text{NIS}}^n \), which is a ratio of estimates, is biased for finite \(n \).
Normalised Importance Sampling Estimator

- Proof strong consistency (not examinable). The strong law of large numbers yields

\[P \left(\lim_{n \to \infty} \hat{A}_n \to A \right) = P \left(\lim_{n \to \infty} \hat{B}_n \to B \right) = 1 \]

This implies

\[P \left(\lim_{n \to \infty} \hat{A}_n \to A, \lim_{n \to \infty} \hat{B}_n \to B \right) = 1 \]

and

\[P \left(\lim_{n \to \infty} \frac{\hat{A}_n}{\hat{B}_n} \to \frac{A}{B} \right) = 1. \]
Example Revisited: Gamma Distribution

- We are interested in estimating $\mathbb{E}_p(\phi(X))$ where $X \sim \text{Gamma}(\alpha, \beta)$ using samples from a $\text{Gamma}(a, b)$ distribution; i.e.

$$
p(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad q(x) = \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx}
$$

- Suppose we do not remember the expression of the normalising constant for the Gamma, so that we use

$$
\tilde{p}(x) = x^{\alpha-1} e^{-\beta x}, \quad \tilde{q}(x) = x^{a-1} e^{-bx}
$$

$$
\Rightarrow \tilde{w}(x) = x^{\alpha-a} e^{-(\beta-b)x}
$$

- Practically, we simulate $Y_i \sim \text{Gamma}(a, b)$, for $i = 1, 2, \ldots, n$ then compute

$$
\tilde{w}(Y_i) = Y_i^{\alpha-a} e^{-(\beta-b)Y_i}, \quad \hat{\theta}_{n}^{\text{NIS}} = \frac{\sum_{i=1}^{n} \phi(Y_i) \tilde{w}(Y_i)}{\sum_{i=1}^{n} \tilde{w}(Y_i)}.
$$
Final more involved example (not examinable)

- In genetics, we often consider a tree of relatedness between samples
- Consider in the below, generates the history (C, C, C, C, T)