Recap from previous lecture

- Examples of distributions from different fields we might be interested in studying
- Monte Carlo
 - Suppose $X \sim \text{dist}$, and we have a method to simulate iid random variables $X_i \sim \text{dist}$
 - Then $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^{n} \phi(X_i)$ is an unbiased estimator of $E(\phi(X))$
 - We can form a confidence interval for θ using the sample variable $S_{\phi(X)}^2$ using the central limit theorem
- Rest of simulation lectures
 - How do we generate $X \sim \text{dist}$ in the real world for increasingly complicated distributions
 - Today: Inversion, the simplest case, when the CDF is well behaved
 - Also today: Transformation, when you can build your distribution from distributions that are well behaved
A quick note about pseudo-random numbers

- We seek to be able to generate complicated random variables and stochastic models.
- Henceforth, we will assume that we have access to a sequence of independent random variables \((U_i, i \geq 1)\) that are uniformly distributed on \((0, 1)\); i.e. \(U_i \sim U[0, 1]\).
- In R, the command \(u \leftarrow \text{runif}(100)\) return 100 realizations of uniform r.v. in \((0, 1)\).
- Strictly speaking, we only have access to pseudo-random (deterministic) numbers.
- The behaviour of modern random number generators (constructed on number theory) resembles mathematical random numbers in many respects: standard statistical tests for uniformity, independence, etc. do not show significant deviations.
Outline

Inversion Method

Transformation Methods
Recap of CDF definition

- A function $F : \mathbb{R} \rightarrow [0, 1]$ is a cumulative distribution function (cdf) if
 - F is increasing; i.e. if $x \leq y$ then $F(x) \leq F(y)$
 - F is right continuous; i.e. $F(x + \epsilon) \rightarrow F(x)$ as $\epsilon \rightarrow 0$ ($\epsilon > 0$)
 - $F(x) \rightarrow 0$ as $x \rightarrow -\infty$ and $F(x) \rightarrow 1$ as $x \rightarrow +\infty$.

- A random variable $X \in \mathbb{R}$ has cdf F if $\mathbb{P}(X \leq x) = F(x)$ for all $x \in \mathbb{R}$.

- If F is differentiable on \mathbb{R}, with derivative f, then X is continuously distributed with probability density function (pdf) f.
Proposition. Let F be a continuous and strictly increasing cdf on \mathbb{R}, with inverse $F^{-1} : [0, 1] \to \mathbb{R}$. Then the random variable $F(X)$ has a uniform distribution on $[0, 1]$.

Proof. Let $y \in [0, 1]$. Then

$$P(F(X) \leq y) = P(X \leq F^{-1}(y)) = F(F^{-1}(y)) = y$$

and so $F(X) \sim \mathcal{U}[0, 1]$
The inverse of the CDF applied to uniforms generates random variables from the CDF

- **Proposition.** Let F be a continuous and strictly increasing cdf on \mathbb{R}, with inverse $F^{-1} : [0, 1] \to \mathbb{R}$. Let $U \sim U[0, 1]$ then $X = F^{-1}(U)$ has cdf F.

- **Proof.** Let $x \in \mathbb{R}$. Then we have

$$
P(X \leq x) = P(F^{-1}(U) \leq x)
= P(U \leq F(x))
= F(x).$$
Inversion method

Algorithm 1 Inversion method

- Given CDF F, calculate F^{-1}
- Simulate independent $U_i \sim U[0, 1]$
- Return $X_i = F^{-1}(U_i) \sim F$
Illustrative example of inversion method using Gaussian distribution

Top: pdf of a Gaussian r.v., bottom: associated cdf.
Exponential distribution example

- **Exponential distribution.** Let $\lambda > 0$. Then the exponential CDF is given by

\[F(x) = 1 - e^{-\lambda x} \]

We calculate

\[u = F(x) \]
\[u = 1 - e^{-\lambda x} \]
\[\Rightarrow \log (1 - u) = -\lambda x \]
\[\Rightarrow x = -\frac{\log (1 - u)}{\lambda} \]
Exponential rvs using the inversion method

```r
set.seed(9119)
lambda <- 0.25
n <- 100000
u <- runif(n)
x_inversion <- -log(1 - u) / lambda
x_rexp <- rexp(n = n, rate = lambda)
wilcox.test(x_inversion, x_rexp)$p.value # 0.46
```

Histogram of `x_inversion`

Histogram of `x_rexp`
Examples

► **Cauchy distribution.** It has pdf and cdf

\[f(x) = \frac{1}{\pi (1 + x^2)}, \quad F(x) = \frac{1}{2} + \frac{\arctan x}{\pi} \]

We have

\[u = F(x) \iff u = \frac{1}{2} + \frac{\arctan x}{\pi} \]

\[\iff x = \tan \left(\pi \left(u - \frac{1}{2} \right) \right) \]

► **Logistic distribution.** It has pdf and cdf

\[f(x) = \frac{\exp(-x)}{(1 + \exp(-x))^2}, \quad F(x) = \frac{1}{1 + \exp(-x)} \]

\[\iff x = \log \left(\frac{u}{1-u} \right). \]

► **Practice:** Derive an algorithm to simulate from a Weibull random variable with rates \(\alpha, \lambda > 0 \)
Definition of the discrete CDF inverse

Proposition. Let F be a cdf on \mathbb{R} and define its generalized inverse $F^{-1} : [0, 1] \rightarrow \mathbb{R}$,

$$F^{-1}(u) = \inf \{x \in \mathbb{R}; F(x) \geq u \}.$$

Let $U \sim \mathcal{U}[0, 1]$ then $X = F^{-1}(U)$ has cdf F.

If X is a discrete \mathbb{N}-r.v. with $P(X = n) = p(n)$, we get $F(x) = \sum_{j=0}^{\lfloor x \rfloor} p(j)$ and $F^{-1}(u)$ is $x \in \mathbb{N}$ such that

$$\sum_{j=0}^{x-1} p(j) < u \leq \sum_{j=0}^{x} p(j)$$

with the LHS = 0 if $x = 0$.

Note: the mapping at the values $F(n)$ are irrelevant (0 probability of getting a single point).

Note: the same method is applicable to any discrete valued r.v. X, $P(X = x_n) = p(n)$.
Example code for simple discrete rv

```r
p <- c(0.5, 0.3, 0.2)  ## pmf
p_norm <- c(0, cumsum(p))  ## 0.0 0.5 0.8 1.0
m <- length(p)
n <- 100000
u <- runif(n)
x <- array(NA, n)
for(i in 1:n) {
  for(j in 1:m) {
    if ((p_norm[j] < u[i]) & (u[i] <= p_norm[j + 1])) {
      x[i] <- j
    }
  }
}
sum(is.na(x))  ## 0
table(x)
## 1  2  3
## 50227 30105 19668
```
Example: Geometric Distribution

- If $0 < p < 1$ and $q = 1 - p$ and we want to simulate $X \sim \text{Geom}(p)$ then

 $p(x) = pq^{x-1}, \quad F(x) = 1 - q^x \quad x = 1, 2, 3...$

- The smallest $x \in \mathbb{N}$ giving $F(x) \geq u$ is the smallest $x \geq 1$ satisfying

 $x \geq \log(1 - u)/\log(q)$

 and this is given by

 $x = F^{-1}(u) = \left\lceil \frac{\log(1 - u)}{\log(q)} \right\rceil$

 where $\lceil x \rceil$ rounds up and we could replace $1 - u$ with u.

Illustration of the Inversion Method: Discrete case
Outline

Inversion Method

Transformation Methods
Transformation Methods

▶ Suppose we
 ▶ Have a random variable \(Y \sim Q, \ Y \in \Omega_Q \), which we can simulate (e.g., by inversion)
 ▶ Have a random variable \(X \sim P, \ X \in \Omega_P \), which we wish to simulate
 ▶ Can find a function \(\varphi : \Omega_Q \to \Omega_P \) with the property that if \(Y \sim Q \) then \(X = \varphi(Y) \sim P \).

▶ Then we can simulate from \(X \) by first simulating \(Y \sim Q \), and then set \(X = \varphi(Y) \).

▶ Inversion is a special case of this idea.

▶ We may generalize this idea to take functions of collections of variables with different distributions.
Transformation method

Algorithm 2 Transformation method

- Find $Y \sim Q$ that you can simulate from, and a function φ such that $X = \varphi(Y) \sim P$
- Simulate independent $Y_i \sim Q$
- Return $X_i = \varphi(Y_i) \sim P$
Example: Let $Y_i, i = 1, 2, \ldots, \alpha$, be iid variables with $Y_i \sim \text{Exp}(1)$ and $X = \beta^{-1} \sum_{i=1}^{\alpha} Y_i$ then $X \sim \text{Gamma}(\alpha, \beta)$.

Proof: The MGF of the random variable X is

$$
\mathbb{E} \left(e^{tX} \right) = \prod_{i=1}^{\alpha} \mathbb{E} \left(e^{\beta^{-1}tY_i} \right) = (1 - t/\beta)^{-\alpha}
$$

which is the MGF of a \text{Gamma}(\alpha, \beta) variable.

Incidentally, the \text{Gamma}(\alpha, \beta) density is $f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$ for $x > 0$.
Proposition. If $R^2 \sim \text{Exp}(\frac{1}{2})$ and $\Theta \sim \mathcal{U}[0, 2\pi]$ are independent then $X = R \cos \Theta$, $Y = R \sin \Theta$ are independent with $X \sim \mathcal{N}(0, 1)$, $Y \sim \mathcal{N}(0, 1)$.

Proof: We have $f_{R^2, \Theta}(r^2 \theta) = \frac{1}{2} \exp \left(-\frac{r^2}{2} \right) \frac{1}{2\pi}$ and therefore we are interested in

$$f_{X,Y}(x, y) = f_{R^2, \Theta}(r^2(x, y), \theta(x, y)) \left| \det \frac{\partial (r^2, \theta)}{\partial (x, y)} \right|$$

where

$$\left| \det \frac{\partial (r^2, \theta)}{\partial (x, y)} \right| = \left| \begin{array}{cc} \frac{\partial r^2}{\partial x} & \frac{\partial r^2}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{array} \right| = 2$$

$$\implies f_{X,Y}(x, y) = \frac{1}{2} e^{-\frac{1}{2}(x^2+y^2)} \frac{1}{2\pi^2} = \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \right) \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} \right)$$
Transformation Methods: Box-Muller Algorithm, applied

Let \(U_1 \sim \mathcal{U}[0, 1] \) and \(U_2 \sim \mathcal{U}[0, 1] \) then

\[
R^2 = -2 \log(U_1) \sim \text{Exp} \left(\frac{1}{2} \right)
\]

\[
\Theta = 2\pi U_2 \sim \mathcal{U}[0, 2\pi]
\]

and

\[
X = R \cos \Theta \sim \mathcal{N}(0, 1)
\]

\[
Y = R \sin \Theta \sim \mathcal{N}(0, 1),
\]

Note this still requires evaluating \(\log, \cos \) and \(\sin \).
Box Muller applied

```r
set.seed(913)
n <- 100000
u1 <- runif(n)
u2 <- runif(n)
lambda <- 1 / 2
r2 <- -log(1 - u1) / lambda ## are now Exp(1/2)
theta <- 2 * pi * u2 ## U[0, 2*pi]
r <- sqrt(r2)
x <- r * cos(theta)
y <- r * sin(theta)
round(c(mean(x), var(x)), 3) ## -0.001 0.998
round(c(mean(y), var(y)), 3) ## -0.003 1.000
cor(x, y) ## -0.0006317268
```
Simulating Multivariate Normal

Let consider $X \in \mathbb{R}^d$, $X \sim N(\mu, \Sigma)$ where μ is the mean and Σ is the (positive definite) covariance matrix.

$$f_X(x) = (2\pi)^{-d/2} |\det \Sigma|^{-1/2} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right).$$

Proposition. Let $Z = (Z_1, \ldots, Z_d)$ be a collection of d independent standard normal random variables. Let L be a real $d \times d$ matrix satisfying

$$LL^T = \Sigma,$$

and

$$X = LZ + \mu.$$

Then

$$X \sim N(\mu, \Sigma).$$
Simulating Multivariate Normal Proof

Proof. We have \(f_Z(z) = (2\pi)^{d/2} \exp \left(-\frac{1}{2} z^T z \right) \). The joint density of the new variables is

\[
f_X(x) = f_Z(z) \left| \det \frac{\partial z}{\partial x} \right|
\]

where \(\frac{\partial z}{\partial x} = L^{-1} \) and \(\det(L) = \det(L^T) \) so \(\det(L^2) = \det(\Sigma) \), and \(\det(L^{-1}) = 1/\det(L) \) so \(\det(L^{-1}) = \det(\Sigma)^{-1/2} \). Also

\[
z^T z = (x - \mu)^T \left(L^{-1} \right)^T L^{-1} (x - \mu) = (x - \mu)^T \Sigma^{-1} (x - \mu).
\]

If \(\Sigma = V D V^T \) is the eigendecomposition of \(\Sigma \), we can pick \(L = V D^{1/2} \).

Cholesky factorization \(\Sigma = LL^T \) where \(L \) is a lower triangular matrix.
Recap

- Monte Carlo is useful but requires simulated random variables.
- Assume we can always draw uniform random variables.
- **Inversion method** For continuous strictly increasing CDFs, we can draw X_i as $F^{-1}(U_i)$.
- We can do the same thing for discrete distributions.
- **Transformation method** If we can find φ for some distribution Y_i such that $X_i = \varphi(Y_i)$, then we can simulate X_i in that way.