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Many decisions are tree-structured
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Decisi

Many decisions are tree-structured

Are you developing a rash that does not
fade when you press a giass tumbler or finger
against it?

no

Are you suffering from a stiff neck,
headache and d9 you find the light
nurts your eyes gnd/or you feeling
very sleepy and fonfused

Emergenc
("Dial 999

no

Is there sneeging, a runny
nose, a mild temperature,
a sore throat, and general
aches and pafns?

Emergency
("Dial 999") yes no

Are you feellng flushed
hot and swepty? Do

have a high temperature
(over 38 C or 100.4 F), a
headache, gs well as a
runny nose pnd general
aches and phins?

Self-care

ves no

Self-care Self-care
(basic)



Many decisions are tree-structured

@ Employee salary

Degree

High Setool  college

Work Experience Work Experience Work Experience

$X4 $X;  $X3 $X4 $X5 $X6



Terminology

Parent of a node c is the immediate predecessor node.

Children of a node ¢ are the immediate successors of ¢, equivalently
nodes which have c as a parent.

@ Branch are the edges/arrows connecting the nodes.
@ Root node is the top node of the tree; the only node without parents.
@ Leaf nodes are nodes which do not have children.

@ Stumps are trees with just the root node and two leaf nodes.

@ A K—ary tree is a tree where each node (except for leaf nodes) has K
children. Usually working with binary trees (K = 2).

@ Depth of a tree is the maximal length of a path from the root node to a
leaf node.
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A tree partitions the feature space

@ A Decision Tree is a hierarchically organized structure, with each node
splitting the data space into pieces based on value of a feature.
e Equivalent to a partition of R, into K disjoint feature regions {R;,...,R;},

where each R; C IR
@ On each feature region R ;, the same decision/prediction is made for all

T € R;.
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Examples

Partitions and regression trees

X

X

(a) General partition that cannot
be obtained from recursive binary

splitting.
X; <ty
X2<t, X1 Sty
X2 =ty
Ry R, R3
R4 Rs

(c) Tree corresponding to the partition
in the top right panel.
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83 R
t ) g,
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(b) Partition of a two-dimensional
feature space by recursive binary
splitting, as used in CART, applied
to some fake data.

_—

X

(d) A perspective plot of the prediction
surface.



Learning a tree model

Three things to learn:
@ The structure of the tree.
@ The threshold values (6;).

@ The values for the leaves
(A, B,...).




Classification Tree

Classification Tree:
@ Given the dataset D = (z1,11), ..., (zn, yn) Where
v e Ry, €Y ={1,...,m}.
@ minimize the misclassification error in each leaf
@ the estimated probability of each class k in region R ; is simply:

Bir = YoMy =k)-I(x; € Rj)
" >z € Ryj)

@ This is the frequency in which label k occurs in the leaf R;. (These
estimates can be regularized.)



Example: A tree model for deciding where to eat

Decide whether to wait for a table at a restaurant, based on the following
attributes (Example from Russell and Norvig, AIMA)

@ Alternate: is there an alternative restaurant nearby?

@ Bar: is there a comfortable bar area to wait in?

Fri/Sat: is today Friday or Saturday?

Hungry: are we hungry?

Patrons: number of people in the restaurant (None, Some, Full)
Price: price range ($, $3$, $$$)

Raining: is it raining outside?

Reservation: have we made a reservation?

Type: kind of restaurant (French, Italian, Thai, Burger)

Wait Estimate: estimated waiting time (0-10, 10-30, 30-60, >60)



Example: A tree model for deciding where to eat

Choosing a restaurant
(Example from Russell & Norvig, AIMA)

Example Attributes Target
Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
Xy T| F | F T |Some| $3% F T | French| 0-10 T
X, T| F | F T | Full $ F F | Thai |30-60 F
X3 F| T | F F |Some| § F F | Burger| 0-10 T
X, T| F | T| T | Full $ F F | Thai |10-30 T
X; T| F | T| F | Full | 388 F T | French| >60 F
Xs F| T | F T |Some| $$ T T | Italian| 0-10 T
X7 F| T F F | None| § T F | Burger| 0-10 F
X3 F| F | F T |Some| $$ T T | Thai | 0-10 T
Xy F T T F Full $ T F | Burger| >60 F
X0 T| T T T Full | $$$ F T | Italian | 10-30 F
Xn F| F | F F | None| §$ F F | Thai | 0-10 F
X T| T | T T | Full $ F F | Burger| 30-60 T

Classification of examples is positive (T) or negative (F)



A possible decision tree

| Reservation? || Fri'Sat? |
Yes

Yes

No Yes

Is this the best decision tree?



Decision tree training/learning

For simplicity assume both features and outcome are binary (take YES/NO
values).

Algorithm 1 DecisionTreeTrain (data, features)

. guess <+ the most frequent label in data

if all [abels in data are the same then
return LEAF (guess)

else

NO + the subset of data on which f = NO
Y ES + the subset of data on which f = Y ES
left < DecisionTreeTrain (NO, features — {f})
right < DecisionTreeTrain (YES, features — {f})
return NODE(f,left, right)

end if

TRV NO O N 2

—_




First decision: at the root of the tree

Which attribute to split?

000000 000000
000000 000000
None Some Full French Ttalian Thai Burger
0000 00 o o 00 00
o000 (] o 00 o0

Patrons? is a better choice—gives information about the classification

Idea: use information gain to choose
which attribute to split



Information gain

@ Basic idea: Gaining information reduces uncertainty
@ Given a random variable X with K different values, (a1, ...,ax), we can
use different measures of “purity” of a node:
o Entropy (measured in bits, max= 1):

ZP k) X logy P(X = a)
o Misclassification error (max= 0.5): if ¢ is the most common class label
1-P(X =c¢)
@ GINI Index (max= 0.5):
K
D P(X =a)(1 - P(X = a))
k=1

e E.g. compare splits [(300, 100), (100, 300)] and [(200, 400), (200, 0)], taking
average of scores for nodes produced (but note different max values). which
node will each measure prefer, and would you agree?

@ CA4.5 Tree algorithm: Classification uses entropy to measure uncertainty.
@ CART (class. and regression tree) algorithm: Classification uses Gini.



Different measures of uncertainty

0.5

[T Entroj
0.4 | Gini index Py
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Algorithm

Which attribute to split?

000000
000000
None Some: Full French Ttalian Thai Burger
0000 00 (] o 00 00
o0 (XX 1] o o oo o0

Patrons? is a better choice—gives information about the classification

Patron vs. Type?
By choosing Patron, we end up with a partition (3 branches) with smaller entropy, ie,

smaller uncertainty (0.45 bit)

By choosing Type, we end up with uncertainty of | bit.

Thus, we choose Patron over Type.



Uncertainty if we go with “Patron”

For “None” branch

0 ., 0 2 2\
0+2 8042 " 0+2 ®012) "

T
For “Some” branch
4 4 4
— log + log > =0 None Some Full
(4+0 440 4+0 440 0000 00
For “Full” branch o0 o000

2 2 4 4

- 1 1 ~ 0.9
<2+4 %5124 °g2+4>

For choosing “Patrons”

weighted average of each branch: this quantity is called conditional entropy

p 4 6
S04 04 5 0.9 = 0.45



Algorithm

Conditional entropy for Type

For “French” branch 000000
000000
1 1 1 n 1 ) 1 1 &
- O; O = ype?
T+1 8141 "141 %141

T French Italian Thai Burger
For “Italian” branch 6 oo Y
(-] e o0 o0

1 1 1 + 1 ) 1 1
- 0] 0 =
T+1 8141 141 %141
For “Thai” and “Burger” branches

2 o2 22\
242 %942 942 ®oyo) T

For choosing “Type”

weighted average of each branch:

2 1-1-2 1-|-4 1-|-4 1=1
— % — % — % —*x1=
12 12 12 12



Algorithm

Do we split on “Non” or “Some”?

No, we do not

None Full
0000 00
o0 o000

The decision is deterministic, as seen from the training data



Algorithm

next split? 333822
Patrons?
We will look only at the 6 instances with Nono_—"some Fu
Patrons == Full 0000 Seee
}:L\'amplc Attributes Laigoy
Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X, T| F | F T |Some| $$$ F T | French| 0-10 T
X, T|F | F| T |Full| $ F | F | Thai |30-60 F
X3 F| T | F| F |Some| $ F F | Burger| 0-10 T
X, T| F | T| T |Full| $§ F | F | Thai |10-30 T
X T| F | T| F | Full | $8 | F | T |French| >60 5
Xs F| T | F T |Some| $$ T T | Italian | 0-10 T
X7 F| T | F F | None| $ T F | Burger| 0-10 F
Xs F| F | F T |Some| $$ T T | Thai | 0-10 T
Xq F| T | T | F | Ful $ T F | Burger| >60 =
X0 T| T | T| T | Full | $8$ I5 T | Italian | 10-30 F
Xn F| F F F | None| § F F | Thai | 0-10 F
X2 T| T | T| T | Full| $ E F | Burger| 30-60 T
Classification of examples is positive (T) or negative (F)



Greedily, we build

| Reservation? || Fri'Sat? |

Nol/\Yes




An Algorithm for Classification Trees

Assume binary classification for simplicity (y; € {0, 1}), and numerical features
(see Section 9.2.4 in ESL for categorical features and binary trees).
@ Startwith Ry = X = RP.
@ For each feature j = 1,...,p, for each value v € R that we can split on:
@ Split data set:

I<:{i::c<j><v} I>:{i:1:l(.j)2v}

i
@ Estimate parameters:
Ziel< Yi

<]

Ziel> Yi

B< = T

B> =
© Compute the quality of split, e.g., using entropy (note: we take 0log 0 = 0)

‘[<| |I>| B(ﬂ>)

78 +7
T+ Lo T I

where
B(q) = —[glog,(q) + (1 — q) log,(1 — q)]

@ Choose split, i.e., feature j and value v, with maximum quality.
@ Recurse on both children, with datasets (z;,v:)icr. and (z;, y;)icr- -



Comparing the features with conditional entropy

@ Given two random variables X and Y, conditional entropy is

HY|X] = ZP ) x H[Y|X = ag]

@ In the algorithm,
e X: the attribute to be split (e.g. patrons)
e Y the labels (e.g. wait or not)
e Estimated P(X = ay) is the weight in the quality calculation

@ Relation to information gain
Gain[Y, X] = H[Y] — H[Y|X]

e When H[Y] is fixed, we need only to compare conditional entropy.
e Minimizing conditional entropy is equivalent to maximizing information gain.

Patrons vs Type

Gain[Y, Patrons] = H[Y] — H[Y |Patrons] = 1 — 0.45 = 0.55
GainlY,Type] = H[Y] - H[Y|Type] =1-1 =0



What is the optimal Tree Depth?

@ We need to be careful to pick an appropriate tree depth.

@ If the tree is too deep, we can overfit.

@ If the tree is too shallow, we underfit

@ Max depth is a hyper-parameter that should be tuned by the data.

@ Alternative strategy is to create a very deep tree, and then to prune it.

09

0.85
08 |
075

;
07 |

Accuracy

0.65

06 On training data ——
On test data ----

0.55

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)



Control the size of the tree

We would prune to have a smaller one

No Yes No Yes

If we stop here, not all training sample would be classified correctly.
More importantly, how do we classify a new instance?

We label the leaves of this smaller tree with the majority
of training samples’ labels




Example

Example

We stop after the root (first node)

000000
000000
None Some Full
0000 00
o0 T 0000

Wait: no Wait: yes Wait: no



Algorithm

Computational Considerations

Numerical Features
@ We could split on any feature, with any threshold
@ However, for a given feature, the only split points we need to consider are
the the n values in the training data for this feature.

@ If we sort each feature by these n values, we can quickly compute our
impurity metric of interest (cross entropy or others), skipping values
where labels are unchanged.

o This takes O(d nlogn) time (sorting n elements takes O(nlogn) steps).

Categorical Features
@ Assuming q distinct categories, there are 29! — 1 possible binary
partitions we can consider.

@ However, things simplify in the case of binary classification (or
regression, see Section 9.2.4 in ESL for details).



Summary of learning classification trees

Advantages
@ Easily interpretable by human (as long as the tree is not too big)
@ Computationally efficient
@ Handles both numerical and categorical data

@ It is parametric thus compact: unlike Nearest Neighborhood
Classification, we do not have to carry our training instances around

@ Building block for various ensemble methods (more on this later)

Disadvantages
@ Heuristic training techniques
@ Finding partition of space that minimizes empirical error is NP-hard.
@ We resort to greedy approaches with limited theoretical underpinning.

@ Unstable: small changes in input data lead to different trees. Mitigated by
ensable methods (e.g. random forests, coming up).



Regression Tree

Regression Tree:
@ Given the dataset D = (z1,11),. .., (zn, yn) Where
v, € Ry, €Y ={1,...,m}.
@ minimize the squared loss (may use others!) in each leaf
@ the parameterized function is:

Zﬁj (x € Rj)

@ Using squared loss, optimal parameters are:

B = i ¥i Iz € Ry)
! it Wz € Ry)

i.e. the sample mean.



An Algorithm for Regression Trees

Assume numerical features (see Section 9.2.4 in ESL for categorical).
@ Start with R; = X = RP.
@ For each feature j = 1, ..., p, for each value v € R that we can split on:
@ Split data set:

I<:{i:x<'7> <wv} I>={i:x§j)2v}

i

@ Estimate parameters:

Zi61< Yi

[1<]

Zi61> Yi

B< = T

B> =

© AQuality of split: highest quality is achieved for minimum squared loss,

which is defined as
D =B+ (i —B)

iclc iels

© Choose split, i.e., feature j and value v, with maximum quality.
© Recurse on both children, with datasets (z;,y:)icr. and (z;,y;)icr. -



Example of Regression Trees

y\ Feature Space
H I
'Y ) [ ] [ ]
% ! %
N eee 'S 72
00 o900
000y
S1 > X
Regression Tree
x < 51



Example of Regression Trees

y
. Feature Space
0, 0o
3.033’2. ot®e
* " e%
V3
(XX
."' V1 % ) [ ] ’
LT
> x

S2 S1

Regression Tree



Example of Regression Trees

B

Y3

Feature Space




Model Complexity

@ When should a regression tree growing be stopped?
@ As for classification, can use pruning (early stopping or post-pruning)
@ In general, can also use a regularized objective

R°™(T) 4 C x size(T)

o Early stopping: row the tree from scratch and stop once the criterion
objective starts to increase.

e Pruning: first grow the full tree and prune nodes (starting at leaves), until the
objective starts to increase.

e Pruning is preferred as the choice of tree is less sensitive to “wrong” choices
of split points and variables to split on in the first stages of tree fitting.

o Use cross-validation to determine optimal C.



Possible decision tree pruning rules

@ Stop when the number of leaves is more than a threshold
@ Stop when the leaf’s error is less than a threshold
@ Stop when the number of instances in each leaf is less than a threshold

@ Stop when the p-value between two divided leafs is smaller than a certain
threshold (e.g. 0.05 or 0.01) based on chosen statistical tests.



Algorithm

Example: Neurosurgery

Patient information

Predictive model
(Decision Tree)

Prediction for the
success probabilty of
Neurosurgery

Recommend
Neurosurgery only for
certain patient groups

Type | Explanation Note
Patient | 1,449 patients with neurosurgery 2 year follow-up
Feature | 91 Features (61 Continuous / 30 Binary)
Label MCID 1: 938 Patients ((i-l.?‘j%)
MCID 0: 511 Patients (35.3%)




Algorithm

Example: Neurosurgery

Success
64.7%
SRS Image —
/_,,Scure <345
Success
77.8%
SRS Image
Score < 2.9 T~
Success Success
91.3% 68.9%
SRS Mental
Score < 4.1
Success Success
61.7% 77.5%
Weight
< 76,5
Success Success
65.0% 24.0%

Success
40.0%
SRS Mental
Score < 4.1 T
Success Success
27.9% 47.9%
Trunk Shift
<155
Success Success
34.0% 55.3%
Sacral Slope
<495
Success Success
26.2% 63.6%




Algorithm

Example: Heart Transplant

Patients / Donors
Information

predictive model Prediction for the
(Decision Tree) success of heart
transplant

Y

Optimally match
patients and donors
to minimize mortality

Alive: 39,730 Patients (70.05%)

Type | Explanation Note

Patient | 56,716 patients (heart transplant patients) | follow-up until they died
Feature | 141 Features (84 Continuous / 57 Binary) | From 1986 to 2015
Label Dead: 16,936 Patients (29.95%)




Example: Heart Transplant

Success
70.1%
DonorAge< —
- 28
Success Success
81.2% 55.3%
No Ventilator ~ No Ventilator ~
- Assist T ~ _Assist T _
Success Success Success Success
88.5% 54.2% 67.1% 21.3%
: N Previous No Donor HEF No Dialysis in
No Diabet: ~
° lé. eres T Transplant < 0 . C Antigen Listing Iy
Success Success Success Success Success Success Success Success
91.2% 69.1% 71.2% 32.1% 57.9% 71.2% 41.5% 13.9%
Creatinine < Previous
1.36, Transplant < 0
Success Success Success Success

71.1% 69.3% 69.1% 41.1%




Example: Boston Housing Data

crim per capita crime rate by town

nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling

dis weighted distances to five Boston employment centres

lstat percentage of lower status of the population
(6 more features)

@ Predict median house value.



Data

Algorithm
ing

Boston Housi

Example

NOX
8.32

S30I4d ISNOH NVIAIW

NOX
8.84

S30I4d ISNOH NVIAIW S30I4d ISNOH NVIAIW

LOG( CRIME )

LOG( CRIME )

Different possible splits (features and thresholds) result in different quality measures.



Example: Boston Housing Data

@ Overall, the best first split is on variable rm, average number of rooms per

dwelling.

@ Final tree contains predictions in leaf nodes.

m< 6.941
T

Istat>F14.4

crim>%6.992

11.98 17.14

dis>=[1.385

rm< 6.543
45.58
21.63 27.43

rm< 7.437

crim>x7.393 nox>=).682¢
144 3335 219 459



Example: Pima Indians Diabetes Dataset

Goal: predict whether or not a patient has diabetes.

> library (rpart)
> library (MASS)
> data(Pima.tr)
> rp <- rpart (Pima.tr[,8] ~ ., data=Pima.tr[,-8]
>

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 200 68 No (0.66000000 0.34000000)
2) glu< 123.5 109 15 No (0.86238532 0.13761468)

4) age< 28.5 74 4 No (0.94594595 0.05405405) =«

5) age>=28.5 35 11 No (0.68571429 0.31428571)
10) glu< 90 9 0 No (1.00000000 0.00000000) =
11) glu>=90 26 11 No (0.57692308 0.42307692)

22) bp>=68 19 6 No (0.68421053 0.31578947) x*
23) bp< 68 7 2 Yes (0.28571429 0.71428571) =
3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)

6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
12) glu< 166 27 6 No (0.77777778 0.22222222)
13) glu>=166 8 2 Yes (0.25000000 0.75000000)

7) ped>=0.3095 56 15 Yes (0.26785714 0.73214286
14) bmi< 28.65 11 3 No (0.72727273 0.27272727
15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444) «

*
*
)
)

*



Example: Pima Indians Diabetes Dataset

> plot (rp,margin=0.1); text (rp,use.n=T)
glu< 123.5
T

age< 28.5 ped< (.3095

70/4

13/6 215
glu< 166 bmi< [28.65
NL YL
21/6 2/6 N Yes

8/3 7/38



Algorithm

Two possible trees.

> rpl <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> plot (rpl);text (rpl)

> rp2 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8],
control=rpart.control (cp=0.05))
> plot (rp2) ;text (rp2)

glu< 1235

3095

glud168 bmi<ps 65

No Yes  bp<pp95 skink a2
agef 32
No Yes No Yes
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