Statistical Machine Learning

Pier Francesco Palamara

Department of Statistics
University of Oxford
Slide credits and other course material can be found at:
http://www.stats.ox.ac.uk/~palamara/SML_BDI.html

Many decisions are tree-structured

Many decisions are tree-structured

Many decisions are tree-structured

- Employee salary

Terminology

- Parent of a node c is the immediate predecessor node.
- Children of a node c are the immediate successors of c, equivalently nodes which have c as a parent.
- Branch are the edges/arrows connecting the nodes.
- Root node is the top node of the tree; the only node without parents.
- Leaf nodes are nodes which do not have children.
- Stumps are trees with just the root node and two leaf nodes.
- A K-ary tree is a tree where each node (except for leaf nodes) has K children. Usually working with binary trees ($K=2$).
- Depth of a tree is the maximal length of a path from the root node to a leaf node.

Terminology

A tree partitions the feature space

- A Decision Tree is a hierarchically organized structure, with each node splitting the data space into pieces based on value of a feature.
- Equivalent to a partition of \mathcal{R}_{d} into K disjoint feature regions $\left\{\mathcal{R}_{j}, \ldots, \mathcal{R}_{j}\right\}$, where each $\mathcal{R}_{j} \subset \mathbb{R}^{p}$
- On each feature region \mathcal{R}_{j}, the same decision/prediction is made for all $x \in \mathcal{R}_{j}$.

Partitions and regression trees

(a) General partition that cannot be obtained from recursive binary splitting.

(c) Tree corresponding to the partition in the top right panel.

(b) Partition of a two-dimensional feature space by recursive binary splitting, as used in CART, applied to some fake data.

(d) A perspective plot of the prediction surface.

Learning a tree model

Three things to learn:
(1) The structure of the tree.
(2) The threshold values $\left(\theta_{i}\right)$.
(3) The values for the leaves (A, B, \ldots).

Classification Tree

Classification Tree:

- Given the dataset $D=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ where

$$
x_{i} \in \mathbb{R}, y_{i} \in Y=\{1, \ldots, m\} .
$$

- minimize the misclassification error in each leaf
- the estimated probability of each class k in region \mathcal{R}_{j} is simply:

$$
\beta_{j k}=\frac{\sum_{i} \mathbb{I}\left(y_{i}=k\right) \cdot \mathbb{I}\left(x_{i} \in \mathcal{R}_{j}\right)}{\sum_{i} \mathbb{I}\left(x_{i} \in \mathcal{R}_{j}\right)}
$$

- This is the frequency in which label k occurs in the leaf \mathcal{R}_{j}. (These estimates can be regularized.)

Example: A tree model for deciding where to eat

Decide whether to wait for a table at a restaurant, based on the following attributes (Example from Russell and Norvig, AIMA)

- Alternate: is there an alternative restaurant nearby?
- Bar: is there a comfortable bar area to wait in?
- Fri/Sat: is today Friday or Saturday?
- Hungry: are we hungry?
- Patrons: number of people in the restaurant (None, Some, Full)
- Price: price range (\$, \$\$, \$\$\$)
- Raining: is it raining outside?
- Reservation: have we made a reservation?
- Type: kind of restaurant (French, Italian, Thai, Burger)
- Wait Estimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Example: A tree model for deciding where to eat

Choosing a restaurant

(Example from Russell \& Norvig, AIMA)

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_{1}	T	F	F	T	Some	$\$ \$ \$$	F	T	French	$0-10$	T
X_{2}	T	F	F	T	Full	$\$$	F	F	Thai	$30-60$	F
X_{3}	F	T	F	F	Some	$\$$	F	F	Burger	$0-10$	T
X_{4}	T	F	T	T	Full	$\$$	F	F	Thai	$10-30$	T
X_{5}	T	F	T	F	Full	$\$ \$ \$$	F	T	French	>60	F
X_{6}	F	T	F	T	Some	$\$ \$$	T	T	Italian	$0-10$	T
X_{7}	F	T	F	F	None	$\$$	T	F	Burger	$0-10$	F
X_{8}	F	F	F	T	Some	$\$ \$$	T	T	Thai	$0-10$	T
X_{9}	F	T	T	F	Full	$\$$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	$\$ \$ \$$	F	T	Italian	$10-30$	F
X_{11}	F	F	F	F	None	$\$$	F	F	Thai	$0-10$	F
X_{12}	T	T	T	T	Full	$\$$	F	F	Burger	$30-60$	T

Classification of examples is positive (T) or negative (F)

A possible decision tree

Is this the best decision tree?

Decision tree training/learning

For simplicity assume both features and outcome are binary (take YES/NO values).

Algorithm 1 DecisionTreeTrain (data, features)
1: guess \leftarrow the most frequent label in data
2: if all labels in data are the same then
3: return LEAF (guess)
4: else
5: $\quad f \leftarrow$ the "best" feature \in features
6: $\quad N O \leftarrow$ the subset of data on which $f=N O$
7: $\quad Y E S \leftarrow$ the subset of data on which $f=Y E S$
8: \quad left \leftarrow DecisionTreeTrain (NO, features $-\{f\}$)
9: right \leftarrow DecisionTreeTrain (YES, features $-\{f\}$)
10: return $\operatorname{NODE}(f$, left, right $)$
11: end if

First decision: at the root of the tree

Which attribute to split?

Patrons? is a better choice-gives information about the classification

Idea: use information gain to choose which attribute to split

Information gain

- Basic idea: Gaining information reduces uncertainty
- Given a random variable X with K different values, $\left(a_{1}, \ldots, a_{K}\right)$, we can use different measures of "purity" of a node:
- Entropy (measured in bits, $\max _{K}=1$):

$$
H[X]=-\sum_{k=1}^{K} P\left(X=a_{k}\right) \times \log _{2} P\left(X=a_{k}\right)
$$

- Misclassification error (max $=0.5$): if c is the most common class label

$$
1-P(X=c)
$$

- GINI Index (max=0.5):

$$
\sum_{k=1}^{K} P\left(X=a_{k}\right)\left(1-P\left(X=a_{k}\right)\right)
$$

- E.g. compare splits $[(300,100),(100,300)]$ and $[(200,400),(200,0)]$, taking average of scores for nodes produced (but note different max values). which node will each measure prefer, and would you agree?
- C4.5 Tree algorithm: Classification uses entropy to measure uncertainty.
- CART (class. and regression tree) algorithm: Classification uses Gini.

Different measures of uncertainty

Which attribute to split?

Patrons? is a better choice-gives information about the classification

Patron vs. Type?

By choosing Patron, we end up with a partition (3 branches) with smaller entropy, ie, smaller uncertainty (0.45 bit)

By choosing Type, we end up with uncertainty of I bit.
Thus, we choose Patron over Type.

Uncertainty if we go with "(Patron"

For "None" branch

$$
-\left(\frac{0}{0+2} \log \frac{0}{0+2}+\frac{2}{0+2} \log \frac{2}{0+2}\right)=0
$$

For "Some" branch

$$
-\left(\frac{4}{4+0} \log \frac{4}{4+0}+\frac{4}{4+0} \log \frac{4}{4+0}\right)=0
$$

For "Full" branch

$$
-\left(\frac{2}{2+4} \log \frac{2}{2+4}+\frac{4}{2+4} \log \frac{4}{2+4}\right) \approx 0.9
$$

For choosing "Patrons"
weighted average of each branch: this quantity is called conditional entropy

$$
\frac{2}{12} * 0+\frac{4}{12} * 0+\frac{6}{12} * 0.9=0.45
$$

Conditional entropy for Type

For "French" branch

$$
-\left(\frac{1}{1+1} \log \frac{1}{1+1}+\frac{1}{1+1} \log \frac{1}{1+1}\right)=1
$$

For "Italian" branch

$$
-\left(\frac{1}{1+1} \log \frac{1}{1+1}+\frac{1}{1+1} \log \frac{1}{1+1}\right)=1
$$

For "Thai" and "Burger" branches

$$
-\left(\frac{2}{2+2} \log \frac{2}{2+2}+\frac{2}{2+2} \log \frac{2}{2+2}\right)=1
$$

For choosing "Type"
weighted average of each branch:

$$
\frac{2}{12} * 1+\frac{2}{12} * 1+\frac{4}{12} * 1+\frac{4}{12} * 1=1
$$

Do we split on "Non" or "Some"?

No, we do not

The decision is deterministic, as seen from the training data

next split?

We will look only at the 6 instances with
Patrons == Full

Example	Attributes										WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X_{1}	T	F	F	T	Some	\$\$8	F	T	French	0-10	T
X_{2}	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_{3}	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_{4}	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_{5}	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_{6}	F	T	F	T	Some	\$	T	T	Italian	0-10	T
X_{7}	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_{8}	F	F	F	T	Some	\$8	T	T	Thai	0-10	T
X_{9}	F	T	T	F	Full	5	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$8	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

Classification of examples is positive (T) or negative (F)

Greedily, we build

An Algorithm for Classification Trees

Assume binary classification for simplicity ($y_{i} \in\{0,1\}$), and numerical features (see Section 9.2.4 in ESL for categorical features and binary trees).
(1) Start with $\mathcal{R}_{1}=\mathcal{X}=\mathbb{R}^{p}$.
(2) For each feature $j=1, \ldots, p$, for each value $v \in \mathbb{R}$ that we can split on:
(1) Split data set:

$$
I_{<}=\left\{i: x_{i}^{(j)}<v\right\} \quad I_{>}=\left\{i: x_{i}^{(j)} \geq v\right\}
$$

(2) Estimate parameters:

$$
\beta_{<}=\frac{\sum_{i \in I_{<}} y_{i}}{\left|I_{<}\right|} \quad \beta_{>}=\frac{\sum_{i \in I_{>}} y_{i}}{\left|I_{>}\right|}
$$

(3) Compute the quality of split, e.g., using entropy (note: we take $0 \log 0=0$)

$$
\frac{\left|I_{<}\right|}{\left|I_{<}\right|+\left|I_{>}\right|} \mathrm{B}\left(\beta_{<}\right)+\frac{\left|I_{>}\right|}{\left|I_{<}\right|+\left|I_{>}\right|} \mathrm{B}\left(\beta_{>}\right)
$$

where

$$
\mathrm{B}(q)=-\left[q \log _{2}(q)+(1-q) \log _{2}(1-q)\right]
$$

(3) Choose split, i.e., feature j and value v, with maximum quality.
(9) Recurse on both children, with datasets $\left(x_{i}, y_{i}\right)_{i \in I_{<}}$and $\left(x_{i}, y_{i}\right)_{i \in I_{\rangle}}$.

Comparing the features with conditional entropy

- Given two random variables X and Y, conditional entropy is

$$
H[Y \mid X]=\sum_{k} P\left(X=a_{k}\right) \times H\left[Y \mid X=a_{k}\right]
$$

- In the algorithm,
- X : the attribute to be split (e.g. patrons)
- Y : the labels (e.g. wait or not)
- Estimated $P\left(X=a_{k}\right)$ is the weight in the quality calculation
- Relation to information gain

$$
\operatorname{Gain}[Y, X]=H[Y]-H[Y \mid X]
$$

- When $H[Y]$ is fixed, we need only to compare conditional entropy.
- Minimizing conditional entropy is equivalent to maximizing information gain.

Patrons vs Type

$$
\begin{aligned}
\text { Gain }[Y, \text { Patrons }] & =H[Y]-H[Y \mid \text { Patrons }] \\
\text { Gain }[Y, \text { Type }] & =H[Y]-H[Y \mid \text { Type }] \quad=1-1 \quad=0.55 \\
=1-1 & =0
\end{aligned}
$$

What is the optimal Tree Depth?

- We need to be careful to pick an appropriate tree depth.
- If the tree is too deep, we can overfit.
- If the tree is too shallow, we underfit
- Max depth is a hyper-parameter that should be tuned by the data.
- Alternative strategy is to create a very deep tree, and then to prune it.

Control the size of the tree

We would prune to have a smaller one

If we stop here, not all training sample would be classified correctly.

More importantly, how do we classify a new instance?

We label the leaves of this smaller tree with the majority of training samples' labels

Example

Example

We stop after the root (first node)

000000 000000

Computational Considerations

Numerical Features

- We could split on any feature, with any threshold
- However, for a given feature, the only split points we need to consider are the the n values in the training data for this feature.
- If we sort each feature by these n values, we can quickly compute our impurity metric of interest (cross entropy or others), skipping values where labels are unchanged.
- This takes $O(d n \log n)$ time (sorting n elements takes $O(n \log n)$ steps).

Categorical Features

- Assuming q distinct categories, there are $2^{q-1}-1$ possible binary partitions we can consider.
- However, things simplify in the case of binary classification (or regression, see Section 9.2.4 in ESL for details).

Summary of learning classification trees

Advantages

- Easily interpretable by human (as long as the tree is not too big)
- Computationally efficient
- Handles both numerical and categorical data
- It is parametric thus compact: unlike Nearest Neighborhood Classification, we do not have to carry our training instances around
- Building block for various ensemble methods (more on this later)

Disadvantages

- Heuristic training techniques
- Finding partition of space that minimizes empirical error is NP-hard.
- We resort to greedy approaches with limited theoretical underpinning.
- Unstable: small changes in input data lead to different trees. Mitigated by ensable methods (e.g. random forests, coming up).

Regression Tree

Regression Tree:

- Given the dataset $D=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ where $x_{i} \in \mathbb{R}, y_{i} \in Y=\{1, \ldots, m\}$.
- minimize the squared loss (may use others!) in each leaf
- the parameterized function is:

$$
\hat{f}(x)=\sum_{j=1}^{K} \beta_{j} \cdot \mathbb{I}\left(x \in \mathcal{R}_{j}\right)
$$

- Using squared loss, optimal parameters are:

$$
\hat{\beta}_{j}=\frac{\sum_{i=1}^{n} y_{i} \cdot \mathbb{I}\left(x_{i} \in \mathcal{R}_{j}\right)}{\sum_{i=1}^{n} \mathbb{I}\left(x_{i} \in \mathcal{R}_{j}\right)}
$$

i.e. the sample mean.

An Algorithm for Regression Trees

Assume numerical features (see Section 9.2.4 in ESL for categorical).
(1) Start with $\mathcal{R}_{1}=\mathcal{X}=\mathbb{R}^{p}$.
(2) For each feature $j=1, \ldots, p$, for each value $v \in \mathbb{R}$ that we can split on:
(1) Split data set:

$$
I_{<}=\left\{i: x_{i}^{(j)}<v\right\} \quad I_{>}=\left\{i: x_{i}^{(j)} \geq v\right\}
$$

(2) Estimate parameters:

$$
\beta_{<}=\frac{\sum_{i \in I_{<}} y_{i}}{\left|I_{<}\right|} \quad \beta_{>}=\frac{\sum_{i \in I>} y_{i}}{\left|I_{>}\right|}
$$

(3) Quality of split: highest quality is achieved for minimum squared loss, which is defined as

$$
\sum_{i \in I_{<}}\left(y_{i}-\beta_{<}\right)^{2}+\sum_{i \in I_{>}}\left(y_{i}-\beta_{>}\right)^{2}
$$

(3) Choose split, i.e., feature j and value v, with maximum quality.
(9) Recurse on both children, with datasets $\left(x_{i}, y_{i}\right)_{i \in I_{<}}$and $\left(x_{i}, y_{i}\right)_{i \in I_{>}}$.

Example of Regression Trees

Example of Regression Trees

Example of Regression Trees

Model Complexity

- When should a regression tree growing be stopped?
- As for classification, can use pruning (early stopping or post-pruning)
- In general, can also use a regularized objective

$$
R^{\mathrm{emp}}(T)+C \times \operatorname{size}(T)
$$

- Early stopping: row the tree from scratch and stop once the criterion objective starts to increase.
- Pruning: first grow the full tree and prune nodes (starting at leaves), until the objective starts to increase.
- Pruning is preferred as the choice of tree is less sensitive to "wrong" choices of split points and variables to split on in the first stages of tree fitting.
- Use cross-validation to determine optimal C.

Possible decision tree pruning rules

- Stop when the number of leaves is more than a threshold
- Stop when the leaf's error is less than a threshold
- Stop when the number of instances in each leaf is less than a threshold
- Stop when the p-value between two divided leafs is smaller than a certain threshold (e.g. 0.05 or 0.01) based on chosen statistical tests.

Example: Neurosurgery

Type	Explanation	Note
Patient	1,449 patients with neurosurgery	2 year follow-up
Feature	91 Features (61 Continuous / 30 Binary)	
Label	MCID 1: 938 Patients (64.7\%) MCID 0: 511 Patients (35.3\%)	

Example: Neurosurgery

Example: Heart Transplant

Type	Explanation	Note
Patient	56,716 patients (heart transplant patients)	follow-up until they died
Feature	141 Features (84 Continuous / 57 Binary)	From 1986 to 2015
Label	Dead: 16,986 Patients (29.95%) Alive: 39,730 Patients (70.05\%)	

Example: Heart Transplant

Example: Boston Housing Data

```
crim per capita crime rate by town
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
dis weighted distances to five Boston employment centres
lstat percentage of lower status of the population
... (6 more features)
```

- Predict median house value.

Example: Boston Housing Data

Different possible splits (features and thresholds) result in different quality measures.

Example: Boston Housing Data

- Overall, the best first split is on variable rm, average number of rooms per dwelling.
- Final tree contains predictions in leaf nodes.

Example: Pima Indians Diabetes Dataset

Goal: predict whether or not a patient has diabetes.

```
> library(rpart)
> library (MASS)
> data(Pima.tr)
> rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> rp
n= 200
node), split, n, loss, yval, (yprob)
    * denotes terminal node
1) root 200 68 No (0.66000000 0.34000000)
    2) glu< 123.5 109 15 No (0.86238532 0.13761468)
        4) age< 28.5 74 4 No (0.94594595 0.05405405) *
        5) age>=28.5 35 11 No (0.68571429 0.31428571)
        10) glu< 90 9 0 No (1.00000000 0.00000000) *
        11) glu>=90 26 11 No (0.57692308 0.42307692)
            22) bp > =68 19 6 No (0.68421053 0.31578947) *
            23) bp< 68 7 2 Yes (0.28571429 0.71428571) *
    3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)
        6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
        12) glu< 166 27 6 No (0.77777778 0.22222222) *
        13) glu>=166 8 2 Yes (0.25000000 0.75000000) *
        7) ped}>=0.3095 56 15 Yes (0.26785714 0.73214286)
        14) bmi< 28.65 11 3 No (0.72727273 0.27272727) *
        15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444) *
```


Example: Pima Indians Diabetes Dataset

```
> plot(rp,margin=0.1); text(rp,use.n=T)
```


Two possible trees.

$>\operatorname{rpl}<-\operatorname{rpart}($ Pima.tr$[, 8] \sim$., data=Pima.tr$[,-8])$
> plot (rp1) ; text (rpl)

```
> rp2 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8],
    control=rpart.control(cp=0.05))
> plot(rp2);text(rp2)
```


