Statistical Machine Learning

Pier Francesco Palamara
Department of Statistics
University of Oxford

Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/SML_BDI.html

Logistic regression

Review

- In LDA and QDA, we estimate p(x|y), but for classification we are mainly interested in p(y|x)
- Why not estimate that directly? Logistic regression¹ is a popular way of doing this.

¹Despite the name "regression", we are using it for classification!

Linearity of log-odds and logistic function

• $a + b^{T}x$ models the **log-odds ratio**:

$$\log \frac{p(Y = +1|X = x; a, b)}{p(Y = -1|X = x; a, b)} = a + b^{\top} x.$$

• Solve explicitly for conditional class probabilities (using p(Y = +1|X = x; a, b) + p(Y = -1|X = x; a, b) = 1):

$$p(Y = +1|X = x; a, b) = \frac{1}{1 + \exp(-(a + b^{\top}x))} =: s(a + b^{\top}x)$$
$$p(Y = -1|X = x; a, b) = \frac{1}{1 + \exp(+(a + b^{\top}x))} = s(-a - b^{\top}x)$$

where $s(z) = 1/(1 + \exp(-z))$ is the **logistic function**.

Fitting the parameters of the hyperplane

How to learn a and b given a training data set $(x_i, y_i)_{i=1}^n$?

Consider maximizing the conditional log likelihood:

$$\ell(a,b) = \sum_{i=1}^{n} \log p(y_i|x_i) = \sum_{i=1}^{n} \log s(y_i(a+b^{\top}x_i)).$$

Equivalent to minimizing the empirical risk associated with the log loss:

$$\widehat{R}_{\log}(f_{a,b}) = \frac{1}{n} \sum_{i=1}^{n} -\log s(y_i(a + b^{\top}x_i)) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i(a + b^{\top}x_i)))$$

Logistic Regression

- Log-loss is differentiable, but it is not possible to find optimal a, b analytically.
- For simplicity, absorb a as an entry in b by appending '1' into x vector, as we did before.
- Objective function:

$$\widehat{R}_{\log} = \frac{1}{n} \sum_{i=1}^{n} -\log s(y_i x_i^{\top} b)$$

Logistic Function

$$s(-z) = 1 - s(z)$$

$$\nabla_z s(z) = s(z)s(-z)$$

$$\nabla_z \log s(z) = s(-z)$$

$$\nabla_z^2 \log s(z) = -s(z)s(-z)$$

Differentiate wrt b:

$$\begin{split} \nabla_b \widehat{R}_{\log} &= \frac{1}{n} \sum_{i=1}^n -s(-y_i x_i^\top b) y_i x_i \\ \nabla_b^2 \widehat{R}_{\log} &= \frac{1}{n} \sum_{i=1}^n s(y_i x_i^\top b) s(-y_i x_i^\top b) x_i x_i^\top \succeq 0. \end{split}$$

• We cannot set $\nabla_b \hat{R}_{\log} = 0$ and solve: no closed form solution. We'll use numerical methods.

Where Will We Converge?

Any local minimum is a global minimum

Multiple local minima may exist

Least Squares, Ridge Regression and Logistic Regression are all convex!

Convexity

How to determine convexity? f(x) is convex if

$$f^{''}(x) \ge 0$$

Examples:

$$f(x) = x^2, f^{''}(x) = 2 > 0$$

How to determine convexity in this case?

Matrix of second-order derivatives (Hessian)

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_D} \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_D} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_D} & \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_D} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_D^2} \end{pmatrix}$$

How to determine convexity in the multivariate case?

If the Hessian is positive semi-definite $\mathbf{H} \succeq 0$, then f is convex.

A matrix **H** is positive semi-definite if and only if, $\forall z$,

$$oldsymbol{z}^T \mathbf{H} oldsymbol{z} = \sum_{j,k} H_{j,k} z_j z_k \geq 0$$

Logistic Regression

- Hessian is positive-definite: objective function is convex and there is a single unique global minimum.
- Many different algorithms can find optimal b, e.g.:
 - Gradient descent:

$$b^{\text{new}} = b + \epsilon \frac{1}{n} \sum_{i=1}^{n} s(-y_i x_i^{\top} b) y_i x_i$$

Stochastic gradient descent:

$$b^{\mathsf{new}} = b + \epsilon_t \frac{1}{|I(t)|} \sum_{i \in I(t)} s(-y_i x_i^\top b) y_i x_i$$

where I(t) is a subset of the data at iteration t, and $\epsilon_t \to 0$ slowly $(\sum_t \epsilon_t = \infty, \sum_t \epsilon_t^2 < \infty)$.

- Conjugate gradient, LBFGS and other methods from numerical analysis.
- Newton-Raphson:

$$b^{\mathsf{new}} = b - (\nabla_b^2 \widehat{R}_{\mathsf{log}})^{-1} \nabla_b \widehat{R}_{\mathsf{log}}$$

This is also called iterative reweighted least squares.

Iterative reweighted least squares (IRLS)

• We can write gradient and Hessian in a more compact form. Define $\mu_i = s(x_i^{\top}b)$, and the diagonal matrix **S** with $\mu_i(1-\mu_i)$ on its diagonal. Also define the vector **c** where $c_i = \mathbb{1}(y_i = +1)$. Then

$$\begin{split} \nabla_b \widehat{R}_{\log} = & \frac{1}{n} \sum_{i=1}^n -s(-y_i x_i^\top b) y_i x_i \\ = & \frac{1}{n} \sum_{i=1}^n x_i (\mu_i - c_i) \\ = & \mathbf{X}^\top (\mu - \mathbf{c}) \\ \nabla_b^2 \widehat{R}_{\log} = & \frac{1}{n} \sum_{i=1}^n s(y_i x_i^\top b) s(-y_i x_i^\top b) x_i x_i^\top \\ = & \mathbf{X}^\top \mathbf{S} \mathbf{X} \end{split}$$

Iterative reweighted least squares (IRLS)

Let \mathbf{b}_t be the parameters after t "Newton steps".

The gradient and Hessian at step t are given by:

$$\mathbf{g}_t = \mathbf{X}^\mathsf{T}(\boldsymbol{\mu}_t - \mathbf{c}) = -\mathbf{X}^\mathsf{T}(\mathbf{c} - \boldsymbol{\mu}_t)$$

 $\mathbf{H}_t = \mathbf{X}^\mathsf{T}\mathbf{S}_t\mathbf{X}$

The Newton Update Rule is:

$$\begin{aligned} \mathbf{b}_{t+1} &= \mathbf{b}_t - \mathbf{H}_t^{-1} \mathbf{g}_t \\ &= \mathbf{b}_t + (\mathbf{X}^\mathsf{T} \mathbf{S}_t \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} (\mathbf{c} - \boldsymbol{\mu}_t) \\ &= (\mathbf{X}^\mathsf{T} \mathbf{S}_t \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{S}_t (\mathbf{X} \mathbf{b}_t + \mathbf{S}_t^{-1} (\mathbf{c} - \boldsymbol{\mu}_t)) \\ &= (\mathbf{X}^\mathsf{T} \mathbf{S}_t \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{S}_t \mathbf{z}_t \end{aligned}$$

Where $\mathbf{z}_t = \mathbf{X}\mathbf{b}_t + \mathbf{S}_t^{-1}(\mathbf{c} - \boldsymbol{\mu}_t)$. Then \mathbf{b}_{t+1} is a solution of the "weighted least squares" problem:

minimise
$$\sum_{i=1}^{N} S_{t,ii} (z_{t,i} - \mathbf{b}^{\mathsf{T}} \mathbf{x}_i)^2$$

Linearly separable data

Assume that the data is linearly separable, i.e. there is a scalar α and a vector β such that $y_i(\alpha + \beta^\top x_i) > 0, i = 1, \dots, n$. Let c > 0. The empirical risk for $a = c\alpha, b = c\beta$ is

$$\widehat{R}_{\log}(f_{a,b}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-cy_i(\alpha + \beta^{\top}x_i)))$$

which can be made arbitrarily close to zero as $c \to \infty$, i.e. soft classification rule becomes $\pm \infty$ (overconfidence) \to overfitting.

Regularization provides a solution to this problem.

Multi-class logistic regression

The **multi-class/multinomial** logistic regression uses the **softmax** function to model the conditional class probabilities $p(Y = k | X = x; \theta)$, for K classes $k = 1, \ldots, K$, i.e.,

$$p(Y = k|X = x; \theta) = \frac{\exp\left(w_k^\top x + b_k\right)}{\sum_{\ell=1}^K \exp\left(w_\ell^\top x + b_\ell\right)}.$$

Parameters are $\theta=(b,W)$ where $W=(w_{kj})$ is a $K\times p$ matrix of weights and $b\in\mathbb{R}^K$ is a vector of bias terms.

Multi-class logistic regression


```
library(MASS)
## load crabs data
data(crabs)
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)
## project into first two LD
cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict(cb.lda)
x <- cb.ldp$x[,1:2]
y <- as.numeric(ct==0)
eqscplot(x,pch=2*y+1,col=y+1)</pre>
```

visualize decision boundary

```
gx1 <- seq(-6,6,.02)
gx2 <- seq(-4,4,.02)
gx <- as.matrix(expand.grid(gx1,gx2))
gm <- length(gx1)
gn <- length(gx2)
gdf <- data.frame(LD1=gx[,1],LD2=gx[,2])

lda <- lda(x,y)
y.lda <- predict(lda,x)$class
eqscplot(x,pch=2*y+1,col=2-as.numeric(y==y.lda))
y.lda.grid <- predict(lda,gdf)$class
contour(gx1,gx2,matrix(y.lda.grid,gm,gn),
    levels=c(0.5), add=TRUE,d=FALSE,lty=2,lwd=2)</pre>
```

```
## logistic regression
xdf <- data.frame(x)
logreg <- glm(y ~ LD1 + LD2, data=xdf, family=binomial)
y.lr <- predict(logreg, type="response")</pre>
egscplot (x, pch=2*y+1, col=2-as.numeric(y==(v.lr>.5)))
y.lr.grid <- predict(logreg, newdata=gdf, type="response")</pre>
contour (qx1, qx2, matrix (y.lr.qrid, qm, qn),
   levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE,ltv=3,lwd=1)
contour(gx1,gx2,matrix(v.lr.grid,gm,gn),
   levels=c(.5), add=TRUE,d=FALSE,ltv=1,lwd=2)
## logistic regression with quadratic interactions
logreg <- glm(y ~ (LD1 + LD2)^2, data=xdf, family=binomial)
y.lr <- predict(logreg, type="response")</pre>
egscplot(x,pch=2*v+1,col=2-as.numeric(v==(v.lr>.5)))
v.lr.grid <- predict(logreg,newdata=gdf,type="response")</pre>
contour (qx1, qx2, matrix (y.lr.qrid, qm, qn),
   levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE,ltv=3,lwd=1)
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),
   levels=c(.5), add=TRUE,d=FALSE,ltv=1,lwd=2)
```

Crab Dataset: Blue Female vs. rest

Comparing LDA and logistic regression.

Comparing logistic regression with and without quadratic interactions.

Logistic regression Python demo

```
Single-class: https://github.com/vkanade/mlmt2017/blob/master/lecture11/Logistic%20Regression.ipynb
```

```
Multi-class: https://github.com/vkanade/mlmt2017/blob/master/lecture11/Multiclass%20Logistic%20Regression.ipynb
```

Generative vs. Discriminative

Generative vs Discriminative Learning

- Machine learning: learn a (random) function that maps a variable X (feature) to a variable Y (class) using a (labeled) dataset $\mathcal{D} = \{(X_1, Y_1), \dots, (X_n, Y_n)\}.$
 - Generative Approach: learn P(Y, X) = P(Y|X) P(X).
 - Discriminative Approach: learn P(Y|X).

Generative Learning

- **Generative Approach**: Finds a probabilistic model (a joint distribution P(Y,X)) that explicitly models the distribution of both the features and the corresponding labels (classes).
- Example techniques: LDA, QDA, Naive Bayes (coming soon), Hidden Markov Models, etc.

Discriminative Learning

- **Discriminative Approach**: Finds a good fit for P(Y|X) without explicitly modeling the generative process.
- Example techniques: linear regression, logistic regression, K-nearest neighbors (coming soon), SVMs, perceptrons, etc.
- Example problem: 2 classes, separate the classes.

Generative vs Discriminative Learning

Generative Approach: Finds parameters that explain all data.

$$\widehat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p(x_i, y_i | \theta)$$

- Makes use of all the data.
- Flexible framework, can incorporate many tasks (e.g. classification, regression, semi-supervised learning, survival analysis, generating new data samples similar to the existing dataset, etc).
- Stronger modeling assumptions, which may not be realistic (Gaussianity, independence of features).
- Discriminative Approach: Finds parameters that help to predict only relevant data.

$$\widehat{\theta} = \operatorname*{argmin}_{\theta} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f_{\theta}(x_i)) \quad \text{or} \quad \widehat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n} \log p(y_i | x_i, \theta)$$

- Weaker modeling assumptions (thus often fewer violated assumptions and better calibration of probabilities).
- · Learns to perform better on the given tasks.
- Less immune to overfitting.
- Easier to work with preprocessed data $\phi(x)$.

Naïve Bayes

Naïve Bayes: overview

- Naïve Bayes: another plug-in classifier with a simple generative modelit assumes all measured variables/features are independent given the label.
- Easy to mix and match different types of features, handle missing data.
- Often used with categorical data, e.g. text document classification.
 - A basic standard model for text classification consists of considering a pre-specified dictionary of p words and summarizing each document i by a binary vector x_i ("bag-of-words"):

$$x_i^{(j)} = \left\{ \begin{array}{ll} 1 & \text{if word } j \text{ is present in document} \\ 0 & \text{otherwise.} \end{array} \right.$$

where the presence of the word j is the j-th feature/dimension.

Toy Example

Predict voter preference in US elections

Voted in	Annual	State	Candidate
2012?	Income		Choice
Υ	50K	OK	Clinton
Ν	173K	CA	Clinton
Υ	80K	NJ	Trump
Υ	150K	WA	Clinton
Ν	25K	WV	Johnson
Υ	85K	IL	Clinton
:	:	:	:
Υ	1050K	NY	Trump
N	35K	CA	Trump
N	100K	NY	?

In order to fit a generative model, we'll express the joint distribution as

$$p(\boldsymbol{x}, y \mid \boldsymbol{\theta}, \boldsymbol{\pi}) = p(y \mid \boldsymbol{\pi}) \cdot p(\boldsymbol{x} \mid y, \boldsymbol{\theta})$$

• To model $p(y \mid \boldsymbol{\pi})$, we'll use parameters π_c such that $\sum_c \pi_c = 1$ $p(y = c \mid \boldsymbol{\pi}) = \pi_c$

- For class-conditional densities, for class $c=1,\ldots,C$, we will have a model: $p(\boldsymbol{x}\mid y=c,\boldsymbol{\theta}_c)$
- We assume that the features are conditionally independent given the class label

$$p(\boldsymbol{x} \mid y = c, \boldsymbol{\theta}_c) = \prod_{j=1}^{D} p(x_j \mid y = c, \boldsymbol{\theta}_{jc})$$

- Clearly, the independence assumption is "naïve" and never satisfied. But model fitting becomes very very easy.
- Although the generative model is clearly inadequate, it actually works quite well. Goal is predicting class, not modelling the data!

In our example,

$$\begin{split} p(y = \text{clinton} \mid \pmb{\pi}) &= \pi_{\text{clinton}} \\ p(y = \text{trump} \mid \pmb{\pi}) &= \pi_{\text{trump}} \\ p(y = \text{johnson} \mid \pmb{\pi}) &= \pi_{\text{johnson}} \end{split}$$

Given that a voter supports Trump

$$p(\boldsymbol{x} \mid y = \mathsf{trump}, \boldsymbol{\theta}_{\mathsf{trump}})$$

models the distribution over ${m x}$ given $y={\sf trump}$ and ${m heta}_{\sf trump}$

Similarly, we have $p(x \mid y = \mathsf{clinton}, \pmb{\theta}_{\mathsf{clinton}})$ and $p(x \mid y = \mathsf{johnson}, \pmb{\theta}_{\mathsf{johnson}})$

We need to pick "model" for $p(x \mid y = c, \theta_c)$

Estimate the parameters π_c , θ_c for c = 1, ..., C

Real-Valued Features

- x_i is real-valued annual income
- ullet Example: Use a Gaussian model, so $m{ heta}_{jc} = (\mu_{jc}, \sigma_{jc}^2)$
- Can use other distributions, age is probably not Gaussian!

Categorical Features

- x_j is categorical with values in $\{1, \ldots, K\}$
- ullet Use the **multinoulli** distribution, i.e. $x_j=i$ with probability $\mu_{jc,i}$

$$\sum_{i=1}^{K} \mu_{jc,i} = 1$$

• The special case when $x_j \in \{0,1\}$, use a single parameter $\theta_{jc} \in [0,1]$

- Assume that all the features are binary, i.e. every $x_i \in \{0,1\}$
- (In this case, the log-discriminant function of each class assumes the form $a_c + b_c^{\mathsf{T}} x$ for class c. Verify this.)
- If we have C classes, overall we have only O(CD) parameters, θ_{jc} for each $j=1,\ldots,D$ and $c=1,\ldots,C$
- Without the conditional independence assumption
 - We have to assign a probability for each of the 2^D combination
 - Thus, we have $O(C \cdot 2^D)$ parameters!
 - The 'naïve' assumption breaks the curse of dimensionality and avoids overfitting!

- Let us suppose we have data $\langle (x_i,y_i) \rangle_{i=1}^N$ i.i.d. from some joint distribution p(x,y)
- The probability for a single datapoint is given by:

$$p(\boldsymbol{x}_i, y_i | \boldsymbol{\theta}, \boldsymbol{\pi}) = p(y_i | \boldsymbol{\pi}) \cdot p(\boldsymbol{x}_i | \boldsymbol{\theta}, y_i) = \prod_{c=1}^{C} \pi_c^{\mathbb{I}(y_i = c)} \cdot \prod_{c=1}^{C} \prod_{j=1}^{D} p(x_{ij} | \boldsymbol{\theta}_{jc})^{\mathbb{I}(y_i = c)}$$

- Let N_c be the number of datapoints with $y_i = c$, so that $\sum_{c=1}^{C} N_c = N$
- We write the log-likelihood of the data, assuming points are i.i.d.:

$$\log p(\mathcal{D} \mid \boldsymbol{\theta}, \boldsymbol{\pi}) = \sum_{c=1}^{C} N_c \log \pi_c + \sum_{c=1}^{C} \sum_{j=1}^{D} \sum_{i: u_i = c} \log p(x_{ij} \mid \boldsymbol{\theta}_{jc})$$

 The log-likelihood is easily separated into sums involving different parameters!

We have the log-likelihood for the NBC

$$\log p(\mathcal{D} \mid \boldsymbol{\theta}, \boldsymbol{\pi}) = \sum_{c=1}^{C} N_c \log \pi_c + \sum_{c=1}^{C} \sum_{j=1}^{D} \sum_{i:y_i = c} \log p(x_{ij} \mid \boldsymbol{\theta}_{jc})$$

• We can use maximum likelihood to estimate the parameters (we have done this before). For instance, let's estimate π . We have the following optimization problem:

$$\begin{array}{ll} \text{maximize} & \sum_{c=1}^{C} N_c \log \pi_c \\ \\ \text{subject to}: & \sum_{c=1}^{C} \pi_c = 1 \end{array}$$

 This constrained optimization problem can be solved using Lagrange multipliers

$$\Lambda(\boldsymbol{\pi}, \lambda) = \sum_{c=1}^{C} N_c \log \pi_c + \lambda \left(\sum_{c=1}^{C} \pi_c - 1 \right)$$

We can write the Lagrangean form:

$$\Lambda(\boldsymbol{\pi}, \lambda) = \sum_{c=1}^{C} N_c \log \pi_c + \lambda \left(\sum_{c=1}^{C} \pi_c - 1 \right)$$

We can write the partial derivatives and set them to 0:

$$\frac{\partial \Lambda(\boldsymbol{\pi}, \lambda)}{\partial \pi_c} = \frac{N_c}{\pi_c} + \lambda = 0; \qquad \frac{\partial \Lambda(\boldsymbol{\pi}, \lambda)}{\partial \lambda} = \sum_{c=1}^{C} \pi_c - 1 = 0$$

The solution is obtained by setting

$$\frac{N_c}{\pi_c} + \lambda = 0 \quad \to \quad \pi_c = -\frac{N_c}{\lambda}$$

As well as using the second condition,

$$\sum_{c=1}^{C} \pi_c - 1 = \left(\sum_{c=1}^{C} -\frac{N_c}{\lambda}\right) - 1 = 0 \quad \to \quad \lambda = -\sum_{c=1}^{C} N_c = -N$$

Thus, we get the estimates,

$$\pi_c = \frac{N_c}{N}$$

We have the log-likelihood for the NBC

$$\log p(\mathcal{D} \mid \boldsymbol{\theta}, \boldsymbol{\pi}) = \sum_{c=1}^{C} N_c \log \pi_c + \sum_{c=1}^{C} \sum_{j=1}^{D} \sum_{i:y_i = c} \log p(x_{ij} \mid \boldsymbol{\theta}_{jc})$$

- We obtained the estimates, $\pi_c = \frac{N_c}{N}$
- We can estimate θ_{jc} by taking a similar approach
- To estimate θ_{jc} we only need to use the j^{th} feature of examples with $y_i=c$
- Estimates depend on the model, e.g. Gaussian, Bernoulli, Multinoulli, etc.
- Fitting NBC is very very fast!

NBC: Handling Missing Data

Let's recall our example about trying to predict voter preferences

Voted in	Annual	State	Candidate
2012?	Income		Choice
Υ	50K	OK	Clinton
N	173K	CA	Clinton
Υ	80K	NJ	Trump
Υ	150K	WA	Clinton
N	25K	WV	Johnson
Υ	85K	IL	Clinton
:	÷	:	:
Υ	1050K	NY	Trump
N	35K	CA	Trump
?	100K	NY	?

Suppose a voter does not reveal whether or not they voted in 2012 For now, let's assume we had no missing entries during training

NBC: Handling Missing Data

The prediction rule in a generative model is

$$p(y = c \mid \boldsymbol{x}_{\text{new}}, \boldsymbol{\theta}) = \frac{p(y = c \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{x}_{\text{new}} \mid y = c, \boldsymbol{\theta})}{\sum_{c'=1}^{C} p(y = c' \mid \boldsymbol{\theta}) p(\boldsymbol{x}_{\text{new}} \mid y = c', \boldsymbol{\theta})}$$

Let us suppose our datapoint is $x_{new} = (?, x_2, ..., x_D)$, e.g. (?, 100K, NY)

$$p(y = c \mid \boldsymbol{x}_{\text{new}}, \boldsymbol{\theta}) = \frac{\pi_c \cdot \prod_{j=1}^D p(x_j \mid y = c, \boldsymbol{\theta}_{cj})}{\sum_{c'=1}^C p(y = c' | \boldsymbol{\theta}) \prod_{j=1}^D p(x_j \mid y = c', \boldsymbol{\theta}_{jc})}$$

Since x_1 is missing, we can marginalize it out,

$$p(y = c \mid \boldsymbol{x}_{\text{new}}, \boldsymbol{\theta}) = \frac{\pi_c \cdot \prod_{j=2}^D p(x_j \mid y = c, \boldsymbol{\theta}_{cj})}{\sum_{c'=1}^C p(y = c' \mid \boldsymbol{\theta}) \prod_{j=2}^D p(x_j \mid y = c', \boldsymbol{\theta}_{jc})}$$

This can be done for other generative models, but marginalization requires summation/integration

NBC: Handling Missing Data

For Naïve Bayes Classifiers, training with missing entries is quite easy

Voted in	Annual	State	Candidate
2012?	Income		Choice
?	50K	OK	Clinton
N	173K	CA	Clinton
?	80K	NJ	Trump
Υ	150K	WA	Clinton
N	25K	WV	Johnson
Υ	85K	?	Clinton
:	:	:	:
Υ	1050K	NY	Trump
Ν	35K	CA	Trump
?	100K	NY	?

Let's say for Clinton voters, 103 had voted in 2012, 54 had not, and 25, didn't answer

You can simply set $\theta = \frac{103}{157}$ as the probability that a voter had voted in 2012, conditioned on being a Clinton supporter

Naïve Bayes vs Logistic regression

pima (continuous)

adult (continuous)

"On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes" by A. Ng and M. Jordan, NIPS 2001. m represents training dataset size.

Naïve Bayes vs Logistic regression

- For infinite data
 - If generative model is correct (independence assumption holds)

$$Error_{LR,\infty} \sim Error_{NB,\infty}$$

If generative model is inaccurate (independence assumption does not hold)

$$Error_{LR,\infty} < Error_{NB,\infty}$$

 For finite data (e.g. n points, d features), NB will require less training to converge to its (possibly asymptotically higher) error

$$Error_{LR,n} \leq Error_{LR,\infty} + O\left(\sqrt{\frac{d}{n}}\right)$$

 $Error_{NB,n} \leq Error_{NB,\infty} + O\left(\sqrt{\frac{\log d}{n}}\right)$

Preventing numerical underflow (not examinable)

 Generative classifiers often require multiplying a large number of small quantities, leading to numerical underflow.

$$\log p(y = c|\mathbf{x}) = \log \left[\frac{p(y = c)p(\mathbf{x}|y = c)}{\sum_{c'} p(y = c')p(\mathbf{x}|y = c')} \right]$$
$$= b_c - \log \left[\sum_{c'=1}^{C} e^{b_{c'}} \right]$$
$$b_c \triangleq \log p(\mathbf{x}|y = c) + \log p(y = c)$$

- The terms $e^{b_{c'}}$ are extremely small (e.g. in Naive Bayes), but we cannot sum in the log domain to evaluate $\log \sum_{c'} e^{b_{c'}}$.
- Idea: factor out the largest term². For example:

$$\log(e^{-120} + e^{-121}) = \log(e^{-120}(e^0 + e^{-1})) = \log(e^0 + e^{-1}) - 120.$$

• In general, having defined $B = \max_c b_c$:

$$\log \sum_{c} e^{b_c} = \log \left[\left(\sum_{c} e^{b_c - B} \right) e^{B} \right] = \left[\log \left(\sum_{c} e^{b_c - B} \right) \right] + B$$

²Also see Murphy 3.5.3.

Naïve Bayes code example: Titanic data I

Predicting Titatinc survival from passenger data using Naïve Bayes³:

```
#Install the package
install.packages ("e1071")
#Loading the library
library (e1071)
?naiveBayes #The documentation also uses Titanic data
#Next load the Titanic dataset
data("Titanic")
#Save into a data frame and view it
Titanic df=as.data.frame(Titanic)
#Creating data from table
#This will repeat each combination equal to the frequency
repeating sequence=rep.int(seq_len(nrow(Titanic_df)),
    Titanic df$Freq)
```

#Create the dataset by row repetition created
Titanic_dataset=Titanic_df[repeating_sequence,]

#We no longer need the frequency, drop the feature

Naïve Bayes code example: Titanic data II

Titanic dataset \$Freq=NULL

³code from