Statistical Machine Learning

Pier Francesco Palamara

Department of Statistics
University of Oxford
Slide credits and other course material can be found at:
http://www.stats.ox.ac.uk/~palamara/SML_BDI.html

Logistic regression

Review

- In LDA and QDA, we estimate $p(x \mid y)$, but for classification we are mainly interested in $p(y \mid x)$
- Why not estimate that directly? Logistic regression ${ }^{1}$ is a popular way of doing this.

${ }^{1}$ Despite the name "regression", we are using it for classification!

Linearity of log-odds and logistic function

- $a+b^{\top} x$ models the log-odds ratio:

$$
\log \frac{p(Y=+1 \mid X=x ; a, b)}{p(Y=-1 \mid X=x ; a, b)}=a+b^{\top} x .
$$

- Solve explicitly for conditional class probabilities (using

$$
\begin{aligned}
p(Y=+1 \mid X=x ; a, b)+p(Y & =-1 \mid X=x ; a, b)=1): \\
p(Y=+1 \mid X=x ; a, b) & =\frac{1}{1+\exp \left(-\left(a+b^{\top} x\right)\right)}=: s\left(a+b^{\top} x\right) \\
p(Y=-1 \mid X=x ; a, b) & =\frac{1}{1+\exp \left(+\left(a+b^{\top} x\right)\right)}=s\left(-a-b^{\top} x\right)
\end{aligned}
$$

where $s(z)=1 /(1+\exp (-z))$ is the logistic function.

Fitting the parameters of the hyperplane

How to learn a and b given a training data set $\left(x_{i}, y_{i}\right)_{i=1}^{n}$?

- Consider maximizing the conditional log likelihood:

$$
\ell(a, b)=\sum_{i=1}^{n} \log p\left(y_{i} \mid x_{i}\right)=\sum_{i=1}^{n} \log s\left(y_{i}\left(a+b^{\top} x_{i}\right)\right) .
$$

- Equivalent to minimizing the empirical risk associated with the log loss:

$$
\widehat{R}_{\mathrm{log}}\left(f_{a, b}\right)=\frac{1}{n} \sum_{i=1}^{n}-\log s\left(y_{i}\left(a+b^{\top} x_{i}\right)\right)=\frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i}\left(a+b^{\top} x_{i}\right)\right)\right)
$$

Logistic Regression

- Log-loss is differentiable, but it is not possible to find optimal a, b analytically.
- For simplicity, absorb a as an entry in b by appending ' 1 ' into x vector, as we did before.
- Objective function:

$$
\widehat{R}_{\log }=\frac{1}{n} \sum_{i=1}^{n}-\log s\left(y_{i} x_{i}^{\top} b\right)
$$

Logistic Function

$$
\begin{aligned}
s(-z) & =1-s(z) \\
\nabla_{z} s(z) & =s(z) s(-z) \\
\nabla_{z} \log s(z) & =s(-z) \\
\nabla_{z}^{2} \log s(z) & =-s(z) s(-z)
\end{aligned}
$$

- Differentiate wrt b :

$$
\begin{aligned}
& \nabla_{b} \widehat{R}_{\log }=\frac{1}{n} \sum_{i=1}^{n}-s\left(-y_{i} x_{i}^{\top} b\right) y_{i} x_{i} \\
& \nabla_{b}^{2} \widehat{R}_{\log }=\frac{1}{n} \sum_{i=1}^{n} s\left(y_{i} x_{i}^{\top} b\right) s\left(-y_{i} x_{i}^{\top} b\right) x_{i} x_{i}^{\top} \succeq 0 .
\end{aligned}
$$

- We cannot set $\nabla_{b} \widehat{R}_{\log }=0$ and solve: no closed form solution. We'll use numerical methods.

Where Will We Converge?

Any local minimum is a global minimum

Multiple local minima may exist

Least Squares, Ridge Regression and Logistic Regression are all convex!

Convexity

How to determine convexity? $f(x)$ is convex if

$$
f^{\prime \prime}(x) \geq 0
$$

Examples:

$$
f(x)=x^{2}, f^{\prime \prime}(x)=2>0
$$

How to determine convexity in this case?
Matrix of second-order derivatives (Hessian)

$$
\mathbf{H}=\left(\begin{array}{llll}
\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1}{ }^{2}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x^{2} \partial x_{2}} & \ldots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{D}} \\
\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2}^{2}} & \ldots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2} \partial x_{D}} \\
\ldots & \cdots & \ldots & \ldots \\
\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{D}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2} \partial x_{D}} & \ldots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{D}^{2}}
\end{array}\right)
$$

How to determine convexity in the multivariate case?
If the Hessian is positive semi-definite $\mathbf{H} \succeq 0$, then f is convex.
A matrix \mathbf{H} is positive semi-definite if and only if, $\forall \boldsymbol{z}$,

$$
\boldsymbol{z}^{T} \mathbf{H} \boldsymbol{z}=\sum_{j, k} H_{j, k} z_{j} z_{k} \geq 0
$$

Logistic Regression

- Hessian is positive-definite: objective function is convex and there is a single unique global minimum.
- Many different algorithms can find optimal b, e.g.:
- Gradient descent:

$$
b^{\text {new }}=b+\epsilon \frac{1}{n} \sum_{i=1}^{n} s\left(-y_{i} x_{i}^{\top} b\right) y_{i} x_{i}
$$

- Stochastic gradient descent:

$$
b^{\text {new }}=b+\epsilon_{t} \frac{1}{|I(t)|} \sum_{i \in I(t)} s\left(-y_{i} x_{i}^{\top} b\right) y_{i} x_{i}
$$

where $I(t)$ is a subset of the data at iteration t, and $\epsilon_{t} \rightarrow 0$ slowly

$$
\left(\sum_{t} \epsilon_{t}=\infty, \sum_{t} \epsilon_{t}^{2}<\infty\right)
$$

- Conjugate gradient, LBFGS and other methods from numerical analysis.
- Newton-Raphson:

$$
b^{\text {new }}=b-\left(\nabla_{b}^{2} \widehat{R}_{\mathrm{log}}\right)^{-1} \nabla_{b} \widehat{R}_{\mathrm{log}}
$$

This is also called iterative reweighted least squares.

Iterative reweighted least squares (IRLS)

- We can write gradient and Hessian in a more compact form. Define $\mu_{i}=s\left(x_{i}^{\top} b\right)$, and the diagonal matrix \mathbf{S} with $\mu_{i}\left(1-\mu_{i}\right)$ on its diagonal. Also define the vector \mathbf{c} where $c_{i}=\mathbb{1}\left(y_{i}=+1\right)$. Then

$$
\begin{aligned}
\nabla_{b} \widehat{R}_{\log }= & \frac{1}{n} \sum_{i=1}^{n}-s\left(-y_{i} x_{i}^{\top} b\right) y_{i} x_{i} \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}\left(\mu_{i}-c_{i}\right) \\
& =\mathbf{X}^{\top}(\mu-\mathbf{c}) \\
\nabla_{b}^{2} \widehat{R}_{\log }= & \frac{1}{n} \sum_{i=1}^{n} s\left(y_{i} x_{i}^{\top} b\right) s\left(-y_{i} x_{i}^{\top} b\right) x_{i} x_{i}^{\top} \\
& =\mathbf{X}^{\top} \mathbf{S X}
\end{aligned}
$$

Iterative reweighted least squares (IRLS)

Let \mathbf{b}_{t} be the parameters after t "Newton steps".
The gradient and Hessian at step t are given by:

$$
\begin{aligned}
\mathbf{g}_{t} & =\mathbf{X}^{\top}\left(\boldsymbol{\mu}_{t}-\mathbf{c}\right)=-\mathbf{X}^{\top}\left(\mathbf{c}-\boldsymbol{\mu}_{t}\right) \\
\mathbf{H}_{t} & =\mathbf{X}^{\top} \mathbf{S}_{t} \mathbf{X}
\end{aligned}
$$

The Newton Update Rule is:

$$
\begin{aligned}
\mathbf{b}_{t+1} & =\mathbf{b}_{t}-\mathbf{H}_{t}^{-1} \mathbf{g}_{t} \\
& =\mathbf{b}_{t}+\left(\mathbf{X}^{\top} \mathbf{S}_{t} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\left(\mathbf{c}-\boldsymbol{\mu}_{t}\right) \\
& =\left(\mathbf{X}^{\top} \mathbf{S}_{t} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{S}_{t}\left(\mathbf{X} \mathbf{b}_{t}+\mathbf{S}_{t}^{-1}\left(\mathbf{c}-\boldsymbol{\mu}_{t}\right)\right) \\
& =\left(\mathbf{X}^{\top} \mathbf{S}_{t} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{S}_{t} \mathbf{z}_{t}
\end{aligned}
$$

Where $\mathbf{z}_{t}=\mathbf{X} \mathbf{b}_{t}+\mathbf{S}_{t}^{-1}\left(\mathbf{c}-\boldsymbol{\mu}_{t}\right)$. Then \mathbf{b}_{t+1} is a solution of the "weighted least squares" problem:

$$
\operatorname{minimise} \sum_{i=1}^{N} S_{t, i i}\left(z_{t, i}-\mathbf{b}^{\top} \mathbf{x}_{i}\right)^{2}
$$

Linearly separable data

Assume that the data is linearly separable, i.e. there is a scalar α and a vector β such that $y_{i}\left(\alpha+\beta^{\top} x_{i}\right)>0, i=1, \ldots, n$. Let $c>0$. The empirical risk for $a=c \alpha, b=c \beta$ is

$$
\widehat{R}_{\log }\left(f_{a, b}\right)=\frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(-c y_{i}\left(\alpha+\beta^{\top} x_{i}\right)\right)\right)
$$

which can be made arbitrarily close to zero as $c \rightarrow \infty$, i.e. soft classification rule becomes $\pm \infty$ (overconfidence) \rightarrow overfitting.

Regularization provides a solution to this problem.

Multi-class logistic regression

The multi-class/multinomial logistic regression uses the softmax function to model the conditional class probabilities $p(Y=k \mid X=x ; \theta)$, for K classes $k=1, \ldots, K$, i.e.,

$$
p(Y=k \mid X=x ; \theta)=\frac{\exp \left(w_{k}^{\top} x+b_{k}\right)}{\sum_{\ell=1}^{K} \exp \left(w_{\ell}^{\top} x+b_{\ell}\right)} .
$$

Parameters are $\theta=(b, W)$ where $W=\left(w_{k j}\right)$ is a $K \times p$ matrix of weights and $b \in \mathbb{R}^{K}$ is a vector of bias terms.

Multi-class logistic regression

Crab Dataset

```
library (MASS)
## load crabs data
data(crabs)
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)
## project into first two LD
cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict(cb.lda)
x <- cb.ldp$x[,1:2]
y <- as.numeric(ct==0)
eqscplot ( }x,pch=2*y+1,\operatorname{col}=y+1
```


Crab Dataset

```
## visualize decision boundary
gx1 <- seq(-6,6,.02)
gx2 <- seq(-4,4,.02)
gx <- as.matrix(expand.grid(gx1,gx2))
gm <- length(gx1)
gn <- length (gx2)
gdf <- data.frame(LD1=gx[,1],LD2=gx[,2])
lda <- lda(x,y)
y.lda <- predict(lda,x) $class
eqscplot(x,pch=2*y+1,col=2-as.numeric(y==y.lda))
y.lda.grid <- predict(lda,gdf)$class
contour(gx1,gx2,matrix(y.lda.grid,gm,gn),
    levels=c(0.5), add=TRUE,d=FALSE,lty=2,lwd=2)
```


Crab Dataset

```
## logistic regression
xdf <- data.frame(x)
logreg <- glm(y ~ LD1 + LD2, data=xdf, family=binomial)
y.lr <- predict(logreg,type="response")
eqscplot(x,pch=2*y+1,col=2-as.numeric(y==(y.lr>.5)))
y.lr.grid <- predict(logreg,newdata=gdf,type="response")
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),
    levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE,lty=3,lwd=1)
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),
    levels=c(.5), add=TRUE,d=FALSE,lty=1,lwd=2)
## logistic regression with quadratic interactions
logreg <- glm(y ~ (LD1 + LD2)^2, data=xdf, family=binomial)
y.lr <- predict(logreg,type="response")
eqscplot(x,pch=2*y+1,col=2-as.numeric(y==(y.lr>.5)))
y.lr.grid <- predict(logreg,newdata=gdf,type="response")
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),
    levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE,lty=3,lwd=1)
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),
    levels=c(.5), add=TRUE,d=FALSE,lty=1,lwd=2)
```


Crab Dataset : Blue Female vs. rest

Comparing LDA and logistic regression.

Crab Dataset

Comparing logistic regression with and without quadratic interactions.

Logistic regression Python demo

Single-class: https://github.com/vkanade/mlmt2017/blob/ master/lecture11/Logistic\%20Regression.ipynb

Multi-class: https://github.com/vkanade/mlmt2017/blob/master/ lecture11/Multiclass\%20Logistic\%20Regression.ipynb

Generative vs. Discriminative

Generative vs Discriminative Learning

- Machine learning: learn a (random) function that maps a variable X (feature) to a variable Y (class) using a (labeled) dataset $\mathcal{D}=\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$.
- Generative Approach: learn $P(Y, X)=P(Y \mid X) P(X)$.
- Discriminative Approach: learn $P(Y \mid X)$.

Generative Learning

- Generative Approach: Finds a probabilistic model (a joint distribution $P(Y, X)$) that explicitly models the distribution of both the features and the corresponding labels (classes).
- Example techniques: LDA, QDA, Naive Bayes (coming soon), Hidden Markov Models, etc.

Discriminative Learning

- Discriminative Approach: Finds a good fit for $P(Y \mid X)$ without explicitly modeling the generative process.
- Example techniques: linear regression, logistic regression, K-nearest neighbors (coming soon), SVMs, perceptrons, etc.
- Example problem: 2 classes, separate the classes.

Generative vs Discriminative Learning

- Generative Approach: Finds parameters that explain all data.

$$
\widehat{\theta}=\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p\left(x_{i}, y_{i} \mid \theta\right)
$$

- Makes use of all the data.
- Flexible framework, can incorporate many tasks (e.g. classification, regression, semi-supervised learning, survival analysis, generating new data samples similar to the existing dataset, etc).
- Stronger modeling assumptions, which may not be realistic (Gaussianity, independence of features).
- Discriminative Approach: Finds parameters that help to predict only relevant data.

$$
\widehat{\theta}=\underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f_{\theta}\left(x_{i}\right)\right) \quad \text { or } \quad \hat{\theta}=\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p\left(y_{i} \mid x_{i}, \theta\right)
$$

- Weaker modeling assumptions (thus often fewer violated assumptions and better calibration of probabilities).
- Learns to perform better on the given tasks.
- Less immune to overfitting.
- Easier to work with preprocessed data $\phi(x)$.

Naïve Bayes

Naïve Bayes: overview

- Naïve Bayes: another plug-in classifier with a simple generative model it assumes all measured variables/features are independent given the label.
- Easy to mix and match different types of features, handle missing data.
- Often used with categorical data, e.g. text document classification.
- A basic standard model for text classification consists of considering a pre-specified dictionary of p words and summarizing each document i by a binary vector x_{i} ("bag-of-words"):

$$
x_{i}^{(j)}= \begin{cases}1 & \text { if word } j \text { is present in document } \\ 0 & \text { otherwise. }\end{cases}
$$

where the presence of the word j is the j-th feature/dimension.

Toy Example

Predict voter preference in US elections

Voted in $2012 ?$	Annual Income	State	Candidate Choice
Y	50 K	OK	Clinton
N	173 K	CA	Clinton
Y	80 K	NJ	Trump
Y	150 K	WA	Clinton
N	25 K	WV	Johnson
Y	85 K	IL	Clinton
\vdots	\vdots	\vdots	\vdots
Y	1050 K	NY	Trump
N	35 K	CA	Trump
N	$\mathbf{1 0 0 K}$	NY	$?$

Naïve Bayes Classifier (NBC)

- In order to fit a generative model, we'll express the joint distribution as

$$
p(\boldsymbol{x}, y \mid \boldsymbol{\theta}, \boldsymbol{\pi})=p(y \mid \boldsymbol{\pi}) \cdot p(\boldsymbol{x} \mid y, \boldsymbol{\theta})
$$

- To model $p(y \mid \boldsymbol{\pi})$, we'll use parameters π_{c} such that $\sum_{c} \pi_{c}=1$

$$
p(y=c \mid \boldsymbol{\pi})=\pi_{c}
$$

- For class-conditional densities, for class $c=1, \ldots, C$, we will have a model:

$$
p\left(\boldsymbol{x} \mid y=c, \boldsymbol{\theta}_{c}\right)
$$

- We assume that the features are conditionally independent given the class label

$$
p\left(\boldsymbol{x} \mid y=c, \boldsymbol{\theta}_{c}\right)=\prod_{j=1}^{D} p\left(x_{j} \mid y=c, \boldsymbol{\theta}_{j c}\right)
$$

- Clearly, the independence assumption is "naïve" and never satisfied. But model fitting becomes very very easy.
- Although the generative model is clearly inadequate, it actually works quite well. Goal is predicting class, not modelling the data!

Naïve Bayes Classifier (NBC)

In our example,

$$
\begin{aligned}
p(y=\text { clinton } \mid \boldsymbol{\pi}) & =\pi_{\text {clinton }} \\
p(y=\operatorname{trump} \mid \boldsymbol{\pi}) & =\pi_{\text {trump }} \\
p(y=\text { johnson } \mid \boldsymbol{\pi}) & =\pi_{\text {iohnson }}
\end{aligned}
$$

Given that a voter supports Trump

$$
p\left(\boldsymbol{x} \mid y=\operatorname{trump}, \boldsymbol{\theta}_{\text {trump }}\right)
$$

models the distribution over x given $y=\operatorname{trump}$ and $\boldsymbol{\theta}_{\text {tump }}$
Similarly, we have $p\left(\boldsymbol{x} \mid y=\right.$ clinton, $\left.\boldsymbol{\theta}_{\text {climton }}\right)$ and $p\left(\boldsymbol{x} \mid y=\right.$ johnson, $\left.\boldsymbol{\theta}_{\text {johnson }}\right)$
We need to pick "model" for $p\left(\boldsymbol{x} \mid y=c, \boldsymbol{\theta}_{c}\right)$
Estimate the parameters $\pi_{c}, \boldsymbol{\theta}_{c}$ for $c=1, \ldots, C$

Naïve Bayes Classifier (NBC)

Real-Valued Features

- x_{j} is real-valued annual income
- Example: Use a Gaussian model, so $\boldsymbol{\theta}_{j c}=\left(\mu_{j c}, \sigma_{j c}^{2}\right)$
- Can use other distributions, age is probably not Gaussian!

Categorical Features

- x_{j} is categorical with values in $\{1, \ldots, K\}$
- Use the multinoulli distribution, i.e. $x_{j}=i$ with probability $\mu_{j c, i}$

$$
\sum_{i=1}^{K} \mu_{j c, i}=1
$$

- The special case when $x_{j} \in\{0,1\}$, use a single parameter $\theta_{j c} \in[0,1]$

Naïve Bayes Classifier (NBC)

- Assume that all the features are binary, i.e. every $x_{j} \in\{0,1\}$
- (In this case, the log-discriminant function of each class assumes the form $a_{c}+b_{c}^{\top} x$ for class c. Verify this.)
- If we have C classes, overall we have only $O(C D)$ parameters, $\theta_{j c}$ for each $j=1, \ldots, D$ and $c=1, \ldots, C$
- Without the conditional independence assumption
- We have to assign a probability for each of the 2^{D} combination
- Thus, we have $O\left(C \cdot 2^{D}\right)$ parameters!
- The 'naïve' assumption breaks the curse of dimensionality and avoids overfitting!

Maximum Likelihood for the NBC

- Let us suppose we have data $\left\langle\left(\boldsymbol{x}_{i}, y_{i}\right)\right\rangle_{i=1}^{N}$ i.i.d. from some joint distribution $p(\boldsymbol{x}, y)$
- The probability for a single datapoint is given by:

$$
p\left(\boldsymbol{x}_{i}, y_{i} \mid \boldsymbol{\theta}, \boldsymbol{\pi}\right)=p\left(y_{i} \mid \boldsymbol{\pi}\right) \cdot p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}, y_{i}\right)=\prod_{c=1}^{C} \pi_{c}^{\mathbb{I}\left(y_{i}=c\right)} \cdot \prod_{c=1}^{C} \prod_{j=1}^{D} p\left(x_{i j} \mid \boldsymbol{\theta}_{j c}\right)^{\mathbb{I}\left(y_{i}=c\right)}
$$

- Let N_{c} be the number of datapoints with $y_{i}=c$, so that $\sum_{c=1}^{C} N_{c}=N$
- We write the log-likelihood of the data, assuming points are i.i.d.:

$$
\log p(\mathcal{D} \mid \boldsymbol{\theta}, \boldsymbol{\pi})=\sum_{c=1}^{C} N_{c} \log \pi_{c}+\sum_{c=1}^{C} \sum_{j=1}^{D} \sum_{i: y_{i}=c} \log p\left(x_{i j} \mid \boldsymbol{\theta}_{j c}\right)
$$

- The log-likelihood is easily separated into sums involving different parameters!

Maximum Likelihood for the NBC

- We have the log-likelihood for the NBC

$$
\log p(\mathcal{D} \mid \boldsymbol{\theta}, \boldsymbol{\pi})=\sum_{c=1}^{C} N_{c} \log \pi_{c}+\sum_{c=1}^{C} \sum_{j=1}^{D} \sum_{i: y_{i}=c} \log p\left(x_{i j} \mid \boldsymbol{\theta}_{j c}\right)
$$

- We can use maximum likelihood to estimate the parameters (we have done this before). For instance, let's estimate π. We have the following optimization problem:

$$
\begin{array}{ll}
\text { maximize } & \sum_{c=1}^{C} N_{c} \log \pi_{c} \\
\text { subject to : } & \sum_{c=1}^{C} \pi_{c}=1
\end{array}
$$

- This constrained optimization problem can be solved using Lagrange multipliers

$$
\Lambda(\boldsymbol{\pi}, \lambda)=\sum_{c=1}^{C} N_{c} \log \pi_{c}+\lambda\left(\sum_{c=1}^{C} \pi_{c}-1\right)
$$

Maximum Likelihood for the NBC

We can write the Lagrangean form:

$$
\Lambda(\boldsymbol{\pi}, \lambda)=\sum_{c=1}^{C} N_{c} \log \pi_{c}+\lambda\left(\sum_{c=1}^{C} \pi_{c}-1\right)
$$

We can write the partial derivatives and set them to 0 :

$$
\frac{\partial \Lambda(\boldsymbol{\pi}, \lambda)}{\partial \pi_{c}}=\frac{N_{c}}{\pi_{c}}+\lambda=0 ; \quad \frac{\partial \Lambda(\boldsymbol{\pi}, \lambda)}{\partial \lambda}=\sum_{c=1}^{C} \pi_{c}-1=0
$$

The solution is obtained by setting

$$
\frac{N_{c}}{\pi_{c}}+\lambda=0 \quad \rightarrow \quad \pi_{c}=-\frac{N_{c}}{\lambda}
$$

As well as using the second condition,

$$
\sum_{c=1}^{C} \pi_{c}-1=\left(\sum_{c=1}^{C}-\frac{N_{c}}{\lambda}\right)-1=0 \quad \rightarrow \quad \lambda=-\sum_{c=1}^{C} N_{c}=-N
$$

Thus, we get the estimates,

$$
\pi_{c}=\frac{N_{c}}{N}
$$

Maximum Likelihood for the NBC

- We have the log-likelihood for the NBC

$$
\log p(\mathcal{D} \mid \boldsymbol{\theta}, \boldsymbol{\pi})=\sum_{c=1}^{C} N_{c} \log \pi_{c}+\sum_{c=1}^{C} \sum_{j=1}^{D} \sum_{i: y_{i}=c} \log p\left(x_{i j} \mid \boldsymbol{\theta}_{j c}\right)
$$

- We obtained the estimates, $\pi_{c}=\frac{N_{c}}{N}$
- We can estimate $\boldsymbol{\theta}_{j c}$ by taking a similar approach
- To estimate $\boldsymbol{\theta}_{j c}$ we only need to use the $j^{\text {th }}$ feature of examples with $y_{i}=c$
- Estimates depend on the model, e.g. Gaussian, Bernoulli, Multinoulli, etc.
- Fitting NBC is very very fast!

NBC: Handling Missing Data

Let's recall our example about trying to predict voter preferences

Voted in 2012?	Annual Income	State	Candidate Choice
Y	50 K	OK	Cinton
N	173 K	CA	Clinton
Y	80 K	NJ	Trump
Y	150 K	WA	Clinton
N	25 K	WV	Johnson
Y	85 K	IL	Clinton
\vdots	\vdots	\vdots	\vdots
Y	1050 K	NY	Trump
N	35 K	CA	Trump
?	$\mathbf{1 0 0 K}$	NY	$?$

Suppose a voter does not reveal whether or not they voted in 2012
For now, let's assume we had no missing entries during training

NBC: Handling Missing Data

The prediction rule in a generative model is

$$
p\left(y=c \mid \boldsymbol{x}_{\text {new }}, \boldsymbol{\theta}\right)=\frac{p(y=c \mid \boldsymbol{\theta}) \cdot p\left(\boldsymbol{x}_{\text {new }} \mid y=c, \boldsymbol{\theta}\right)}{\sum_{c^{\prime}=1}^{C} p\left(y=c^{\prime} \mid \boldsymbol{\theta}\right) p\left(\boldsymbol{x}_{\text {new }} \mid y=c^{\prime}, \boldsymbol{\theta}\right)}
$$

Let us suppose our datapoint is $x_{\text {new }}=\left(?, x_{2}, \ldots, x_{D}\right)$, e.g. (?, $\left.100 \mathrm{~K}, \mathrm{NY}\right)$

$$
p\left(y=c \mid \boldsymbol{x}_{\mathrm{new}}, \boldsymbol{\theta}\right)=\frac{\pi_{c} \cdot \prod_{j=1}^{D} p\left(x_{j} \mid y=c, \boldsymbol{\theta}_{c j}\right)}{\sum_{c^{\prime}=1}^{C} p\left(y=c^{\prime} \mid \boldsymbol{\theta}\right) \prod_{j=1}^{D} p\left(x_{j} \mid y=c^{\prime}, \boldsymbol{\theta}_{j c}\right)}
$$

Since x_{1} is missing, we can marginalize it out,

$$
p\left(y=c \mid \boldsymbol{x}_{\text {new }}, \boldsymbol{\theta}\right)=\frac{\pi_{c} \cdot \prod_{j=2}^{D} p\left(x_{j} \mid y=c, \boldsymbol{\theta}_{c j}\right)}{\sum_{c^{\prime}=1}^{C} p\left(y=c^{\prime} \mid \boldsymbol{\theta}\right) \prod_{j=2}^{D} p\left(x_{j} \mid y=c^{\prime}, \boldsymbol{\theta}_{j c}\right)}
$$

This can be done for other generative models, but marginalization requires summation/integration

NBC: Handling Missing Data

For Naïve Bayes Classifiers, training with missing entries is quite easy

Voted in 2012?	Annual Income	State	Candidate Choice
$?$	50 K	OK	Clinton
N	173 K	CA	Clinton
$?$	80 K	NJ	Trump
Y	150 K	WA	Clinton
N	25 K	WV	Johnson
Y	85 K	$?$	Clinton
\vdots	\vdots	\vdots	\vdots
Y	1050 K	NY	Trump
N	35 K	CA	Trump
$?$	100 K	NY	$?$

Let's say for Clinton voters, 103 had voted in 2012, 54 had not, and 25, didn't answer
You can simply set $\theta=\frac{103}{157}$ as the probability that a voter had voted in 2012, conditioned on being a Clinton supporter

Naïve Bayes vs Logistic regression

"On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes" by A. Ng and M. Jordan, NIPS 2001. m represents training dataset size.

Naïve Bayes vs Logistic regression

- For infinite data
- If generative model is correct (independence assumption holds)

$$
\text { Error }_{L R, \infty} \sim \text { Error }_{N B, \infty}
$$

- If generative model is inaccurate (independence assumption does not hold)

$$
\text { Error }_{L R, \infty}<\text { Error }_{N B, \infty}
$$

- For finite data (e.g. n points, d features), NB will require less training to converge to its (possibly asymptotically higher) error

$$
\begin{gathered}
\text { Error }_{L R, n} \leq \text { Error }_{L R, \infty}+O\left(\sqrt{\frac{d}{n}}\right) \\
\text { Error }_{N B, n} \leq \text { Error }_{N B, \infty}+O\left(\sqrt{\frac{\log d}{n}}\right)
\end{gathered}
$$

Preventing numerical underflow (not examinable)

- Generative classifiers often require multiplying a large number of small quantities, leading to numerical underflow.

$$
\begin{aligned}
\log p(y=c \mid \boldsymbol{x}) & =\log \left[\frac{p(y=c) p(\boldsymbol{x} \mid y=c)}{\sum_{c^{\prime}} p\left(y=c^{\prime}\right) p\left(\boldsymbol{x} \mid y=c^{\prime}\right)}\right] \\
& =b_{c}-\log \left[\sum_{c^{\prime}=1}^{C} e^{b_{c^{\prime}}}\right] \\
b_{c} & \triangleq \log p(\boldsymbol{x} \mid y=c)+\log p(y=c)
\end{aligned}
$$

- The terms $e^{b_{c^{\prime}}}$ are extremely small (e.g. in Naive Bayes), but we cannot sum in the \log domain to evaluate $\log \sum_{c^{\prime}} e^{b_{c^{\prime}}}$.
- Idea: factor out the largest term ${ }^{2}$. For example:

$$
\log \left(e^{-120}+e^{-121}\right)=\log \left(e^{-120}\left(e^{0}+e^{-1}\right)\right)=\log \left(e^{0}+e^{-1}\right)-120
$$

- In general, having defined $B=\max _{c} b_{c}$:

$$
\log \sum_{c} e^{b_{c}}=\log \left[\left(\sum_{c} e^{b_{c}-B}\right) e^{B}\right]=\left[\log \left(\sum_{c} e^{b_{c}-B}\right)\right]+B
$$

[^0]
Naïve Bayes code example: Titanic data I

Predicting Titatinc survival from passenger data using Naïve Bayes ${ }^{3}$:

```
#Install the package
install.packages("e1071")
#Loading the library
library(e1071)
?naiveBayes #The documentation also uses Titanic data
#Next load the Titanic dataset
data("Titanic")
#Save into a data frame and view it
Titanic_df=as.data.frame(Titanic)
#Creating data from table
#This will repeat each combination equal to the frequency
repeating_sequence=rep.int(seq_len(nrow(Titanic_df)),
Titanic_df$Freq)
#Create the dataset by row repetition created
Titanic_dataset=Titanic_df[repeating_sequence,]
```


Naïve Bayes code example: Titanic data II

```
#We no longer need the frequency, drop the feature
Titanic_dataset$Freq=NULL
#Fitting the Naive Bayes model
Naive_Bayes_Model=naiveBayes(Survived ~.,
    data=Titanic_dataset)
#What does the model say? Print the model summary
Naive_Bayes_Model
#Prediction on the dataset
NB_Predictions=predict(Naive_Bayes_Model,Titanic_dataset)
#Confusion matrix to check accuracy
table(NB_Predictions,Titanic_dataset$Survived)
```


[^0]: ${ }^{2}$ Also see Murphy 3.5.3.

