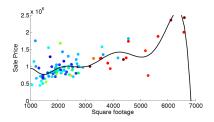
Statistical Machine Learning

Pier Francesco Palamara
Department of Statistics
University of Oxford

Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/SML_BDI.html

Last time: Overfitting, model selection

Fitting the housing price data with high order polynomials

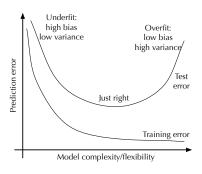


Note that the price would go to zero (or negative) if you buy bigger ones! **This** is called poor generalization/overfitting.

$$R(f) = R_N^{\mathsf{emp}}(f) + \mathsf{overfit}$$
 penalty.

- ullet Cross-validation can be used to estimate R(f) and select the adequate model complexity.
- Another possible strategy is to try to estimate the overfit penalty (e.g. via regularization).

Building models to trade bias with variance



- Building a machine learning model involves trading between its bias and variance. We will see many examples in the next lectures:
 - Bias reduction at the expense of a variance increase: building more complex models, e.g. adding nonlinear features and additional parameters, increasing the number of hidden units in neural nets, using decision trees with larger depth, decreasing the regularization parameter.
 - Variance reduction at the expense of a bias increase: early stopping, using k-nearest neighbours with larger k, increasing the regularization parameter.

Regularization

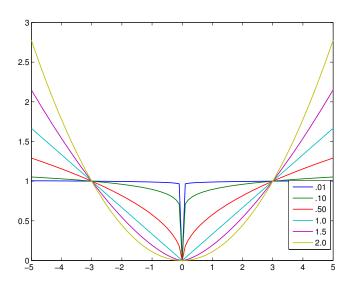
- Flexible models for high-dimensional problems require many parameters.
- With many parameters, learners can easily overfit.
- Regularization: Limit flexibility of model to prevent overfitting.
- Add term penalizing large values of parameters θ.

$$\min_{\theta} R_N(f_{\theta}) + \lambda \|\theta\|_{\rho}^{\rho} = \min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f_{\theta}(x_i)) + \lambda \|\theta\|_{\rho}^{\rho}$$

where $\rho \geq 1$, and $\|\theta\|_{\rho} = (\sum_{j=1}^{p} |\theta_{j}|^{\rho})^{1/\rho}$ is the L_{ρ} norm of θ (also of interest when $\rho \in [0,1)$, but is no longer a norm).

- Also known as shrinkage methods—parameters are shrunk towards 0.
- λ is a tuning parameter (or hyperparameter) and controls the amount of regularization, and resulting complexity of the model.

Regularization

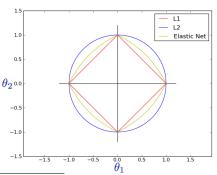


 L_{ρ} regularization profile for different values of ρ .

Types of Regularization

- Ridge regression / Tikhonov regularization: $\rho = 2$ (Euclidean norm)
- LASSO: $\rho = 1$ (Manhattan norm)
- Sparsity-inducing regularization: $\rho \le 1$ (nonconvex for $\rho < 1$)
- Elastic net¹ regularization: mixed L₁/L₂ penalty:

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f_{\theta}(x_i)) + \lambda \left[(1 - \alpha) \|\theta\|_2^2 + \alpha \|\theta\|_1 \right]$$



¹ Figure source: http://scikit-learn.sourceforge.net

Regularized linear regression

A new loss or error function to minimize

$$R_N(\boldsymbol{\theta}, \theta_0) = \sum_n (y_n - \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}_n - \theta_0)^2 + \lambda \|\boldsymbol{\theta}\|_2^2$$

where $\lambda > 0$ controls the model complexity, "shrinking" weights towards 0.

• If $\lambda \to +\infty$, then

$$\widehat{m{ heta}}
ightarrow {m{0}}$$

• If $\lambda \to 0$, back to normal OLS (Ordinary Least Squares).

For regularized linear regression: the solution changes very little (in form) from the OLS solution

$$\operatorname{argmin} \sum_{n} (y_n - \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}_n - \theta_0)^2 + \lambda \|\boldsymbol{\theta}\|_2^2 \Rightarrow \widehat{\boldsymbol{\theta}} = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

and reduces to the OLS solution when $\lambda = 0$, as expected.

As long as $\lambda \geq 0$, the optimization problem remains convex.

Example: overfitting with polynomials

Our regression model

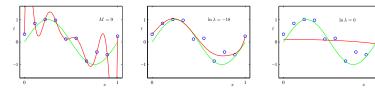
$$y = \sum_{m=1}^{M} \theta_m x^m$$

Regularization would discourage large parameter values as we saw with the OLS solution, thus potentially preventing overfitting.

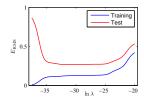
	M=0	M = 1	M = 3	M = 9
$\overline{\theta_0}$	0.19	0.82	0.31	0.35
$ heta_1$		-1.27	7.99	232.37
$ heta_2$			-25.43	-5321.83
$ heta_3$			17.37	48568.31
$ heta_4$				-231639.30
$ heta_5$				640042.26
$ heta_6$				-1061800.52
$ heta_7$				1042400.18
$ heta_8$				-557682.99
$ heta_9$				125201.43

Overfitting in terms of λ

Overfitting is reduced from complex model to simpler one with the help of increasing regularizers



 λ vs. residual error shows the difference of the model performance on training and testing dataset



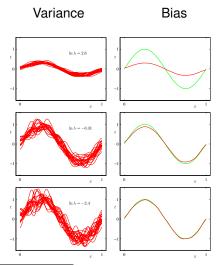
The effect of λ

Large λ attenuates parameters towards 0

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
θ_0	0.35	0.35	0.13
$ heta_1$	232.37	4.74	-0.05
$ heta_2$	-5321.83	-0.77	-0.06
$ heta_3$	48568.31	-31.97	-0.06
$ heta_4$	-231639.30	-3.89	-0.03
$ heta_5$	640042.26	55.28	-0.02
$ heta_6$	-1061800.52	41.32	-0.01
$ heta_7$	1042400.18	-45.95	-0.00
$ heta_8$	-557682.99	-91.53	0.00
$ heta_9$	125201.43	72.68	0.01

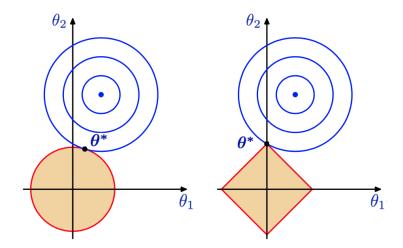
The effect of λ

Increasing λ reduces variance (left) and increases bias (right)².



²Bishop PRML Figure 3.5

L_1 promotes sparsity



 L_1 regularization often leads to optimal solutions with many zeros, i.e., the regression function depends only on the (small) number of features with non-zero parameters.

Regularization in R demo

```
http://www.stats.ox.ac.uk/~palamara/teaching/SML19/
regularization.html
```

What if X^TX is not invertible?

Can you think of any reasons why that could happen?

Answer 1: N < D. Intuitively, not enough data to estimate all the parameters.

Answer 2: X columns are not linearly independent. Intuitively, there are two features that are perfectly correlated. In this case, solution is not unique.

Ridge regression

Intuition: what does a non-invertible X^TX mean? Consider the SVD of this matrix:

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} = \boldsymbol{V} \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & \ddots & 0 \\ 0 & \cdots & \cdots & \lambda_r & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix} \boldsymbol{V}^{\top}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r > 0$ and r < D.

Regularization can fix this problem by ensuring all singular values are non-zero

$$oldsymbol{X}^{\mathrm{T}}oldsymbol{X} + \lambda oldsymbol{I} = oldsymbol{V}\mathsf{diag}(\lambda_1 + \lambda, \lambda_2 + \lambda, \cdots, \lambda)oldsymbol{V}^{\mathsf{T}}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix

Computational complexity

Bottleneck of computing the solution? The OLS problem has a simple, closed-form solution. But computing it involves a number of matrix operations:

$$oldsymbol{ heta} = \left(oldsymbol{X}^{\mathrm{T}} oldsymbol{X}
ight)^{-1} oldsymbol{X}^{\mathrm{T}} oldsymbol{y}$$

Matrix multiply of $X^TX \in \mathbb{R}^{(D+1)\times (D+1)}$ Inverting the matrix X^TX

How many operations do we need?

- $O(ND^2)$ for matrix multiplication
- O(D³) (e.g., using Gauss-Jordan elimination) or O(D^{2.373}) (recent theoretical advances) for matrix inversion
- Impractical for very large D or N
- As an alternative, we could use numerical methods. This type of approach is widely used in several other machine learning algorithms.
 These methods are often the only available option, since sometimes we don't have a closed form solution available.

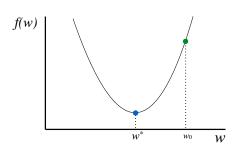
Alternative method: an example of using numerical optimization

(Batch) Gradient descent

- Initialize θ to $\theta^{(0)}$ (e.g., randomly); set t=0; choose $\eta>0$
- Loop until convergence
 - Ompute the gradient $\nabla R_N(\boldsymbol{\theta}) = \boldsymbol{X}^{\mathrm{T}} \left(\boldsymbol{X} \boldsymbol{\theta}^{(t)} \boldsymbol{y} \right)$
 - Update the parameters $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} \eta \nabla R_N(\boldsymbol{\theta})$
 - $0 t \leftarrow t+1$

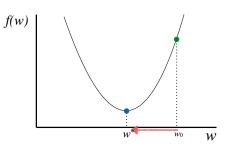
What is the complexity of each iteration?

Start at a random point



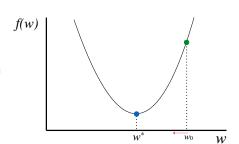
Start at a random point

Determine a descent direction



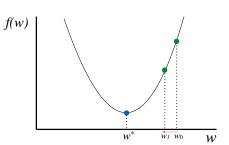
Start at a random point

Determine a descent direction Choose a step size



Start at a random point

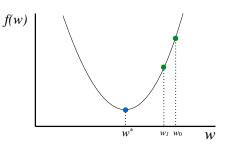
Determine a descent direction Choose a step size Update



Start at a random point

Repeat

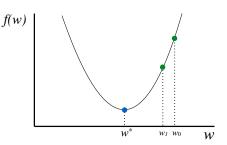
Determine a descent direction Choose a step size Update



Start at a random point

Repeat

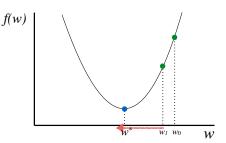
Determine a descent direction Choose a step size Update



Start at a random point

Repeat

Determine a descent direction Choose a step size Update

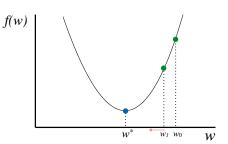


Start at a random point

Repeat

Determine a descent direction

Choose a step size
Update

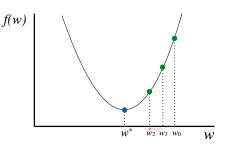


Start at a random point

Repeat

Determine a descent direction Choose a step size

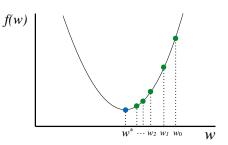
Update

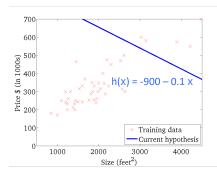


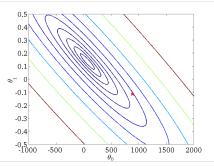
Start at a random point

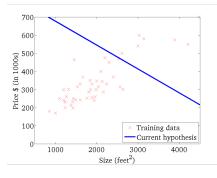
Repeat

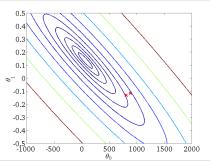
Determine a descent direction Choose a step size Update

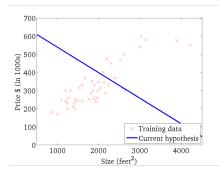


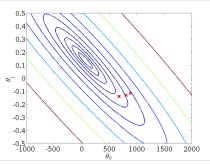


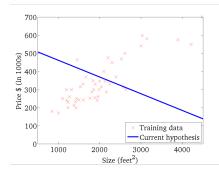


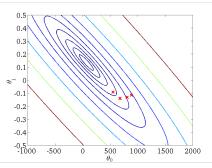


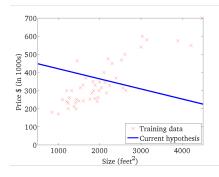


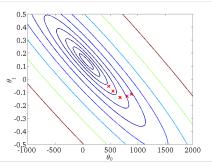


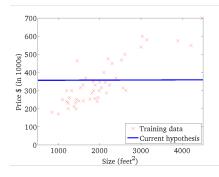


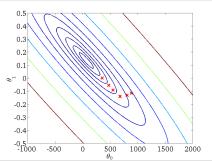


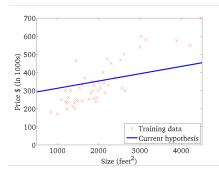


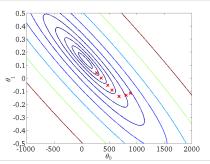


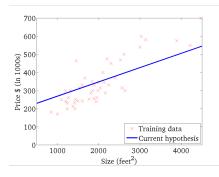


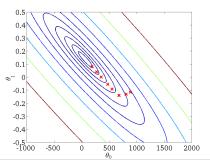


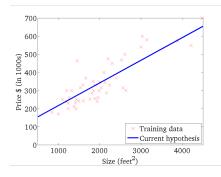


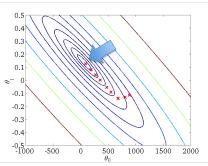






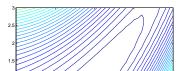






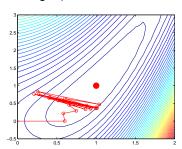
Seeing in action

Choosing the right η is important



small η is too slow?

large η is too unstable?



To see if gradient descent is working, print out function value at each iteration.

- The value should decrease at each iteration.
- Otherwise, adjust η .

Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time

- Initialize θ to $\theta^{(0)}$ (anything reasonable is fine); set t=0; choose $\eta>0$
- Loop until convergence
 - lacktriangledown randomly choose training sample $oldsymbol{x}_t$
 - Compute its contribution to the gradient

$$\boldsymbol{g}_t = (\boldsymbol{x}_t^{\mathrm{T}} \boldsymbol{\theta}^{(t)} - y_t) \boldsymbol{x}_t$$

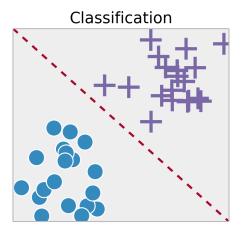
- Update the parameters
- $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} \eta \boldsymbol{g}_t$ $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{t} + 1$

How does the complexity per iteration compare with gradient descent?

Gradient descent: mini-summary

- Batch gradient descent computes the exact gradient.
- Stochastic gradient descent approximates the gradient with a single data point; Its expectation equals the true gradient.
- Mini-batch variant: trade-off between accuracy of estimating gradient and computational cost
- Similar ideas extend to other ML optimization problems.
 - For large-scale problems, stochastic gradient descent often works well.

Classification



Recall: Loss function

- Suppose we made a prediction $\hat{Y} = f(X) \in \mathcal{Y}$ based on observation of X.
- How good is the prediction? We can use a **loss function** $L: \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}^+$ to formalize the quality of the prediction.
- Typical loss functions:
 - Squared loss for regression

$$L(Y, f(X)) = (f(X) - Y)^{2}.$$

Absolute loss for regression

$$L(Y, f(X)) = |f(X) - Y|.$$

• Misclassification loss (or 0-1 loss) for classification

$$L(Y, f(X)) = \begin{cases} 0 & f(X) = Y \\ 1 & f(X) \neq Y \end{cases}.$$

Many other choices are possible, e.g., weighted misclassification loss.

• In classification, if estimated probabilities $\hat{p}(k)$ for each class $k \in \mathcal{Y}$ are returned, **log-likelihood loss** (or **log loss**) $L(Y,\hat{p}) = -\log \hat{p}(Y)$ is often used.

The Bayes Classifier

- What is the optimal classifier if the joint distribution (X,Y) were known?
- The density g of X can be written as a mixture of K components (corresponding to each of the classes):

$$g(x) = \sum_{k=1}^{K} \pi_k g_k(x),$$

where, for $k = 1, \ldots, K$,

- $\mathbb{P}(Y=k)=\pi_k$ are the class probabilities,
- $g_k(x)$ is the conditional density of X, given Y = k.
- The Bayes classifier $f_{\mathsf{Bayes}}: x \mapsto \{1, \dots, K\}$ is the one with minimum risk:

$$R(f) = \mathbb{E}\left[L(Y, f(X))\right] = \mathbb{E}_X \left[\mathbb{E}_{Y|X}[L(Y, f(X))|X]\right]$$
$$= \int_{\mathcal{X}} \mathbb{E}\left[L(Y, f(X))|X = x\right] g(x) dx$$

- The minimum risk attained by the Bayes classifier is called Bayes risk.
- Minimizing $\mathbb{E}[L(Y, f(X))|X = x]$ separately for each x suffices.

The Bayes Classifier

- Consider the 0-1 loss.
- The risk simplifies to:

$$\mathbb{E}\Big[L(Y, f(X))\big|X = x\Big] = \sum_{k=1}^{K} L(k, f(x))\mathbb{P}(Y = k|X = x)$$
$$= 1 - \mathbb{P}(Y = f(x)|X = x)$$

 The risk is minimized by choosing the class with the greatest probability given the observation:

$$\begin{split} f_{\mathsf{Bayes}}(x) &= & \arg\max_{k=1,...,K} \mathbb{P}(Y=k|X=x) \\ &= & \arg\max_{k=1,...,K} \frac{\pi_k g_k(x)}{\sum_{i=1}^K \pi_i g_i(x)} = \arg\max_{k=1,...,K} \, \pi_k g_k(x). \end{split}$$

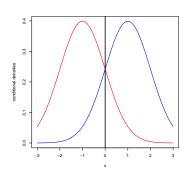
• The functions $x \mapsto \pi_k g_k(x)$ are called **discriminant functions**. The discriminant function with maximum value determines the predicted class of x.

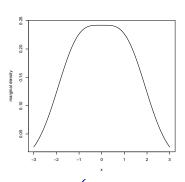
The Bayes Classifier: Example

A simple two Gaussians example: Suppose $X \sim \mathcal{N}(\mu_Y, 1)$, where $\mu_1 = -1$ and $\mu_2 = 1$ and assume equal class probabilities $\pi_1 = \pi_2 = 1/2$.

$$g_1(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x+1)^2}{2}\right)$$
 and $g_2(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-1)^2}{2}\right)$.

$$g_2(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-1)^2}{2}\right)$$

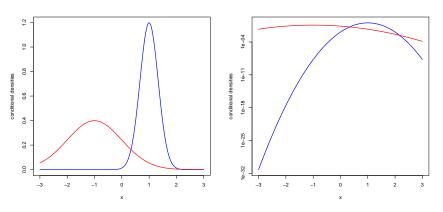




Optimal classification is
$$f_{\mathsf{Bayes}}(x) = \underset{k=1,\dots,K}{\operatorname{arg\,max}} \ \pi_k g_k(x) = \begin{cases} 1 & \text{if } x < 0, \\ 2 & \text{if } x \geq 0. \end{cases}$$

The Bayes Classifier: Example

How do you classify a new observation x if now the standard deviation is still 1 for class 1 but 1/3 for class 2?



Looking at density in a log-scale, optimal classification is to select class 2 if and only if $x \in [0.34, 2.16]$.

Plug-in Classification

The Bayes Classifier:

$$f_{\text{Bayes}}(x) = \underset{k=1,...,K}{\operatorname{arg max}} \pi_k g_k(x).$$

- We know neither the conditional densities g_k nor the class probabilities $\pi_k!$
- The plug-in classifier chooses the class

$$f(x) = \underset{k=1,\dots,K}{\arg\max} \, \hat{\pi}_k \hat{g}_k(x),$$

- where we plugged in
 - estimates $\hat{\pi}_k$ of π_k and $k=1,\ldots,K$ and
 - estimates $\hat{g}_k(x)$ of conditional densities,
- Linear Discriminant Analysis is an example of plug-in classification.