Statistical Machine Learning

Pier Francesco Palamara

Department of Statistics
University of Oxford
Slide credits and other course material can be found at:
http://www.stats.ox.ac.uk/~palamara/SML_BDI.html

Supervised Learning

Supervised Learning

Unsupervised learning:

- Visualize, summarize and compress data.
- To "extract structure" and postulate hypotheses about data generating process from "unlabelled" observations x_{1}, \ldots, x_{N}.

Supervised learning:

- In addition to the observations of X, we have access to their response variables / labels $Y \in \mathcal{Y}$: we observe $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$.
- Types of supervised learning:
- Regression: a numerical value is observed and $\mathcal{Y}=\mathbb{R}$.
- Classification: discrete responses, e.g. $\mathcal{Y}=\{+1,-1\}$ or $\{1, \ldots, K\}$.

The goal is to accurately predict the response Y on new observations of X, i.e., to learn a function $f: \mathbb{R}^{p} \rightarrow \mathcal{Y}$, such that $f(X)$ will be close to the true response Y.

Regression Example: House Price

Retrieve historical sales records

Features used to predict

We will use properties of the house, e.g. squared meters, distance from train station, etc.

Property Details for $\mathbf{3 6 2 0}$ South BUDLONG, Los Angeles, CA 90007

Intierior Featuras		
Kilechen Information - Ramodeled - Oven, Range	Laundry Information - Inside Laundry	Heating \& Cooling - Wal Cooling Unit(s)
Matr-Uniti information		
Community Features - Units in Complex (Tota): 5 Multb-Family Intormation - \#Lased: 5 - A of 8uldings: 1 - Owner Paye Viater - Tenant Pays Elactricity, Tonant Pays Gaz Unit 1 Information - \# of Bods: 2 - \% of Bathe: 1 - Unfurnished - Monthly Rerit: \$1,700	Unit 2 Information - Fi of Beds. 3 - \#ol Bathes 1 - Unfurnished - Montrly Rent: 32,250 Unit 3 Information - Unturnished Unit 4 Information - \#or Bacse 3 - \# of Baths: 1 - Unturnished	- Monthly Rent: $\$ 2.350$ Units Intormation - 1 of Beds: 3 - \# of Bathe 2 - Untumished - Monthly Rere: $\$ 2,325$ Unit 6 Information - fol Bede: 3 - $\#$ of Baths: 1 - Monthly Rern: 32,250
Property /Lot Detala		
Property Features - Aulornexic Gate, CarulCode Alocess Lot Information - Lat Size Fq. Fty 9,649 - Lot Size \|Acreski: 0.2215 - Lot Size Source Public Reconds	- Autarratio Cara, Lamn Sidawalea - Consar Lot, Near Public Transit Property Information - Updeted/Remodefied - Square Footage Sauree Public Records	- Tax Pased Number 5040017019
Parking / Garage, Exterice Features, Utilities a Financing		
Parking Information - A of Pariong 5paces (Totai): 12 - Parking Space - Gated Building Information - Total Flours: 2	Uuility Information - Green Certlication Rating: 0.00 - Green Location: Transportation, Walkability - Green Walk Scorse 0 - Green Year Cenitiec: 0	Financial Information - Cspitalization Rate (\%) 6.25 - Actuad Arnual Groas Rett $\$ 128,331$ - Gross Rant Multipliar:11:29
Location Detalis, Misc. Information 8 Listing Information		
Location Information - Cross Stieels: W 36ch PI	Expense Information * Operating:\$37,864	Listing information - Listing Terms: Cash, Cash To Existing Loan - Buyer Financing: Cash

Goal: predict price of another house given these properties.

Classification Example: Lymphoma

We have gene expression measurements X of $N=62$ patients for $p=4026$ genes. For each patient, $Y \in\{0,1\}$ denotes one of two subtypes of cancer.

```
> str(X)
'data.frame': 62 obs. of 4026 variables:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \$ & Gene 1 & num & -0.344 & -1.188 & 0.520 & -0.748 & -0.868 \\
\hline \$ & Gene 2 & num & -0.953 & -1.286 & 0.657 & -1.328 & -1.330 \\
\hline \$ & Gene 3 & num & -0.776 & -0.588 & 0.409 & -0.991 & -1.517 \\
\hline \$ & Gene 4 & num & -0.474 & -1.588 & 0.219 & 0.978 & -1.604 \\
\hline \$ & Gene 5 & num & -1.896 & -1.960 & -1.695 & -0.348 & -0.595 \\
\hline \$ & Gene 6 & num & -2.075 & -2.117 & 0.121 & -0.800 & 0.651 \\
\hline \$ & Gene 7 & num & -1.875 & -1.818 & 0.317 & 0.387 & 0.041 \\
\hline \$ & Gene 8 & num & -1.539 & -2.433 & -0.337 & -0.522 & -0.668 \\
\hline \$ & Gene 9 & num & -0.604 & -0.710 & -1.269 & -0.832 & 0.458 \\
\hline \$ & Gene 10 & num & -0.218 & -0.487 & -1.203 & -0.919 & -0.848 \\
\hline \$ & Gene 11 & num & -0.340 & 1.164 & 1.023 & 1.133 & -0.541 \\
\hline S & Gene 12 & num & -0.531 & 0.488 & -0.335 & 0.496 & -0.358 \\
\hline
\end{tabular}
> str(Y)
    num [1:62] 0 0 0 1 0 0 1 0 0 0 %...
```

Goal: predict cancer subtype given gene expressions of a new patient.

Regression VS Classification

Classification

Loss function

- Suppose we made a prediction $\hat{Y}=f(X) \in \mathcal{Y}$ after observing X.
- How good is the prediction? We can use a loss function $L: \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}^{+}$to formalize the quality of the prediction.
- Typical loss functions:
- Squared loss for regression

$$
L(Y, f(X))=(f(X)-Y)^{2}
$$

- Absolute loss for regression

$$
L(Y, f(X))=|f(X)-Y| .
$$

- Misclassification loss (or 0-1 loss) for classification

$$
L(Y, f(X))= \begin{cases}0 & f(X)=Y \\ 1 & f(X) \neq Y\end{cases}
$$

Many other choices are possible, e.g., weighted misclassification loss.

- In classification, if estimated probabilities $\hat{p}(k)$ for each class $k \in \mathcal{Y}$ are returned, log-likelihood loss (or log loss) $L(Y, \hat{p})=-\log \hat{p}(Y)$ is often used.

Risk

- paired observations $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$ viewed as i.i.d. realizations of a random variable (X, Y) on $\mathcal{X} \times \mathcal{Y}$ with joint distribution $P_{X Y}$

Risk

For a given loss function L, the risk R of a learned function f is given by the expected loss

$$
R(f)=\mathbb{E}_{P_{X Y}}[L(Y, f(X))],
$$

where the expectation is with respect to the true (unknown) joint distribution of (X, Y).

- The risk is unknown, but we can compute the empirical risk:

$$
R_{N}(f)=\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}\right)\right) .
$$

Hypothesis space and Empirical Risk Minimization

- Hypothesis space \mathcal{H} is the space of functions f under consideration.
- Inductive bias: necessary assumptions on "plausible" hypotheses
- Find best function in the space of hypothesis \mathcal{H} minimizing the risk:

$$
f_{\star}=\underset{f \in \mathcal{H}}{\operatorname{argmin}} \mathbb{E}_{X, Y}[L(Y, f(X))]
$$

- Empirical Risk Minimization (ERM): minimize the empirical risk instead, since we typically do not know $P_{X, Y}$.

$$
\hat{f}=\underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}\right)\right)
$$

- How complex should we allow functions f to be? If hypothesis space \mathcal{H} is "too large", ERM will overfit. Function

$$
\hat{f}(x)= \begin{cases}y_{i} & \text { if } x=x_{i} \\ 0 & \text { otherwise }\end{cases}
$$

will have zero empirical risk, but is useless for generalization, since it has simply "memorized" the dataset.

Linear Regression

We will use the framework of linear regression, which should be familiar to you, to illustrate some of the key concepts of supervised learning.

Regression

Linear regression: predicting the sale price of a house

We will use the house price example.
(This will be our training data)

Correlation between square footage and sale price

The size of a house is a good predictor of its price.

Note: colors are not important here

Roughly linear relationship

The size of a house is a good predictor of its price.

Sale price \approx price_per_sqft \times square_footage + fixed_expense

Linear regression (ordinary least squares)

Setup

- Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Hypotheses: $h_{\boldsymbol{\theta}, \theta_{0}}: \boldsymbol{x} \rightarrow y$, with $h_{\boldsymbol{\theta}, \theta_{0}}(\boldsymbol{x})=\theta_{0}+\sum_{d} \theta_{d} x_{d}=\theta_{0}+\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{x}$ $\boldsymbol{\theta}=\left[\begin{array}{llll}\theta_{1} & \theta_{2} & \cdots & \theta_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$: weights, parameters. θ_{0} is the intercept (also called bias).
- Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
- We will use the squared loss (differentiable):
(sale price - prediction) ${ }^{2}=\left(y_{n}-h_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{n}\right)\right)^{2}$
- Could use other loss functions, e.g. absolute loss:

$$
\text { |sale price - prediction }\left|=\left|y_{n}-h_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{n}\right)\right|\right.
$$

How do we learn parameters?

Minimize prediction error on training data

- Hypothesis:

$$
y=h_{\boldsymbol{\theta}}(x)=\theta_{0}+\theta_{1} x
$$

- We chose to minimize the squared loss. Empirical risk:

$$
R_{N}(\boldsymbol{\theta})=\frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-h_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{n}\right)\right)^{2}
$$

Intuiton behind the squared loss

Assume $x \in \mathbb{R}$

Intuiton behind the squared loss

Assume $x \in \mathbb{R}$

Intuiton behind the squared loss

Assume $x \in \mathbb{R}$

Intuiton behind the squared loss

Assume $x \in \mathbb{R}$

Intuiton behind the squared loss

Intuiton behind the squared loss

$$
R_{N}\left(\theta_{0}, \theta_{1}\right)
$$

Intuiton behind the squared loss

$$
R_{N}\left(\theta_{0}, \theta_{1}\right)
$$

Intuiton behind the squared loss

$h_{\theta}(x)$

$R_{N}\left(\theta_{0}, \theta_{1}\right)$

Intuiton behind the squared loss

$$
R_{N}\left(\theta_{0}, \theta_{1}\right)
$$

A simple case: \boldsymbol{x} is just one-dimensional $(D=1)$

Squared loss
(dropping the $1 / N$ for simplicity)

$$
R_{N}(\boldsymbol{\theta})=\sum_{n}\left[y_{n}-h_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{n}\right)\right]^{2}=\sum_{n}\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right]^{2}
$$

Analytical solution

For linear regression, the minimization can be done in closed form. Identify stationary points by taking derivative with respect to parameters and setting to zero

$$
\begin{gathered}
\frac{\partial R_{N}(\boldsymbol{\theta})}{\partial \theta_{0}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right]=0 \\
\frac{\partial R_{N}(\boldsymbol{\theta})}{\partial \theta_{1}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right] x_{n}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial R_{N}(\boldsymbol{\theta})}{\partial \theta_{0}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right]=0 \\
\frac{\partial R_{N}(\boldsymbol{\theta})}{\partial \theta_{1}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right] x_{n}=0
\end{gathered}
$$

Simplify these expressions to get "Normal Equations"

$$
\begin{aligned}
\sum y_{n} & =N \theta_{0}+\theta_{1} \sum x_{n} \\
\sum x_{n} y_{n} & =\theta_{0} \sum x_{n}+\theta_{1} \sum x_{n}^{2}
\end{aligned}
$$

We have two equations and two unknowns. Solving we get:

$$
\theta_{1}=\frac{\sum\left(x_{n}-\bar{x}\right)\left(y_{n}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \quad \text { and } \quad \theta_{0}=\bar{y}-\theta_{1} \bar{x}
$$

where $\bar{x}=\frac{1}{n} \sum_{n} x_{n}$ and $\bar{y}=\frac{1}{n} \sum_{n} y_{n}$.

Why is minimizing R_{N} sensible?

Probabilistic interpretation

- Noisy observation model

$$
Y=\theta_{0}+\theta_{1} X+\eta
$$

where $\eta \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is a Gaussian random variable

- Likelihood of one training sample $\left(x_{n}, y_{n}\right)$

$$
p\left(y_{n} \mid x_{n} ; \boldsymbol{\theta}\right)=\mathcal{N}\left(\theta_{0}+\theta_{1} x_{n}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right]^{2}}{2 \sigma^{2}}}
$$

Probabilistic interpretation (cont’d)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$
\begin{aligned}
\mathcal{L L}(\boldsymbol{\theta}) & =\log P(\mathcal{D}) \\
& =\log \prod_{n=1}^{N} p\left(y_{n} \mid x_{n}\right)=\sum_{n} \log p\left(y_{n} \mid x_{n}\right) \\
& =\sum_{n}\left\{-\frac{\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right]^{2}}{2 \sigma^{2}}-\log \sqrt{2 \pi} \sigma\right\} \\
& =-\frac{1}{2 \sigma^{2}} \sum_{n}\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right]^{2}-\frac{\mathrm{N}}{2} \log \sigma^{2}-\mathrm{N} \log \sqrt{2 \pi} \\
& =-\frac{1}{2}\left\{\frac{1}{\sigma^{2}} \sum_{n}\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right]^{2}+\mathrm{N} \log \sigma^{2}\right\}+\mathrm{const}
\end{aligned}
$$

What is the relationship between minimizing R_{N} and maximizing the log-likelihood?

Maximum likelihood estimation

Estimating σ, θ_{0} and θ_{1} can be done in two steps

- Maximize over θ_{0} and θ_{1}

$$
\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n}\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right]^{2} \leftarrow \text { That is } R_{N}(\boldsymbol{\theta})!
$$

- Maximize over $s=\sigma^{2}$ (we could estimate σ directly)

$$
\begin{aligned}
& \log P(\mathcal{D})=-\frac{1}{2}\left\{\frac{1}{\sigma^{2}} \sum_{n}\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right]^{2}+\mathrm{N} \log \sigma^{2}\right\}+\text { const } \\
& \frac{\partial \log P(\mathcal{D})}{\partial s}=-\frac{1}{2}\left\{-\frac{1}{s^{2}} \sum_{n}\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right]^{2}+\mathrm{N} \frac{1}{s}\right\}=0 \\
& \rightarrow \sigma^{* 2}=s^{*}=\frac{1}{\mathrm{~N}} \sum_{n}\left[y_{n}-\left(\theta_{0}+\theta_{1} x_{n}\right)\right]^{2}
\end{aligned}
$$

Linear regression when \boldsymbol{x} is D-dimensional

Linear regression when \boldsymbol{x} is D-dimensional

$R_{N}(\boldsymbol{\theta})$ in matrix form

$$
R_{N}(\boldsymbol{\theta})=\sum_{n}\left[y_{n}-\left(\theta_{0}+\sum_{d} \theta_{d} x_{n d}\right)\right]^{2}=\sum_{n}\left[y_{n}-\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{x}_{n}\right]^{2}
$$

where we have redefined some variables (by augmenting)

$$
\boldsymbol{x} \leftarrow\left[\begin{array}{lllll}
1 & x_{1} & x_{2} & \ldots & x_{\mathrm{D}}
\end{array}\right]^{\mathrm{T}}, \quad \boldsymbol{\theta} \leftarrow\left[\begin{array}{lllll}
\theta_{0} & \theta_{1} & \theta_{2} & \ldots & \theta_{\mathrm{D}}
\end{array}\right]^{\mathrm{T}}
$$

which leads to

$$
\begin{aligned}
R_{N}(\boldsymbol{\theta}) & =\sum_{n}\left(y_{n}-\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\left(y_{n}-\boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{\theta}\right) \\
& =\sum_{n} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{\theta}-2 y_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{\theta}+\text { const. } \\
& =\left\{\boldsymbol{\theta}^{\mathrm{T}}\left(\sum_{n} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}}\right) \boldsymbol{\theta}-2\left(\sum_{n} y_{n} \boldsymbol{x}_{n}^{\mathrm{T}}\right) \boldsymbol{\theta}\right\}+\text { const. }
\end{aligned}
$$

$R_{N}(\boldsymbol{\theta})$ in new notations

Design matrix and target vector

$$
\boldsymbol{X}=\left(\begin{array}{c}
\boldsymbol{x}_{1}^{\mathrm{T}} \\
\boldsymbol{x}_{2}^{\mathrm{T}} \\
\vdots \\
\boldsymbol{x}_{\mathrm{N}}^{\mathrm{T}}
\end{array}\right) \in \mathbb{R}^{\mathrm{N} \times(D+1)}, \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{\mathrm{N}}
\end{array}\right)
$$

Compact expression

$$
R_{N}(\boldsymbol{\theta})=\|\boldsymbol{X} \boldsymbol{\theta}-\boldsymbol{y}\|_{2}^{2}=\left\{\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{\theta}-2\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \boldsymbol{\theta}\right\}+\text { const }
$$

Solution in matrix form

Compact expression

$$
R_{N}(\boldsymbol{\theta})=\|\boldsymbol{X} \boldsymbol{\theta}-\boldsymbol{y}\|_{2}^{2}=\left\{\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{\theta}-2\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \boldsymbol{\theta}\right\}+\text { const }
$$

Gradients of Linear and Quadratic Functions

- $\nabla_{x} b^{\top} \boldsymbol{x}=\boldsymbol{b}$
- $\nabla_{\boldsymbol{x}} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=2 \boldsymbol{A} \boldsymbol{x}$ (symmetric \boldsymbol{A})

Normal equation

$$
\nabla_{\boldsymbol{\theta}} R_{N}(\boldsymbol{\theta}) \propto \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{\theta}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}=0
$$

This leads to the linear regression solution ${ }^{1}$

$$
\boldsymbol{\theta}=\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}
$$

${ }^{1}$ Also see PRML book, Section 3.1.2 for a geometric interpretation.

Mini-Summary

- Linear regression is the linear combination of features
$f: \boldsymbol{x} \rightarrow y$, with $f(\boldsymbol{x})=\theta_{0}+\sum_{d} \theta_{d} x_{d}=\theta_{0}+\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{x}$
- If we minimize residual sum of squares as our learning objective, we get a closed-form solution of parameters
- Probabilistic interpretation: maximum likelihood if assuming residual is Gaussian distributed
- D-dimensional case leads to compact expressions in matrix form.

Nonlinear basis functions

Can we learn non-linear functions?

We can use a nonlinear mapping

$$
\phi(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{D} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

where M is the dimensionality of the new feature/input $z($ or $\phi(x))$. Note that M could be either greater than D or less than or the same.

Nonlinear basis functions

Can we learn non-linear functions?
We can use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{D} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

For instance, we could use polynomials of increasing order, $\boldsymbol{\phi}_{k}\left(\boldsymbol{x}_{i}\right)=\boldsymbol{x}_{i}^{k}$

With the new features, we can apply our learning techniques to minimize our errors on the transformed training data

- for linear methods, prediction is still based on $\theta^{\mathrm{T}} \phi(\boldsymbol{x})$

Regression with nonlinear basis functions

Residual sum squares

$$
\sum_{n}\left[\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)-y_{n}\right]^{2}
$$

where $\theta \in \mathbb{R}^{M}$, the same dimensionality as the transformed features $\phi(\boldsymbol{x})$.
The linear regression solution can be formulated with the new design matrix

$$
\boldsymbol{\Phi}=\left(\begin{array}{c}
\boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right)^{\mathrm{T}} \\
\boldsymbol{\phi}\left(\boldsymbol{x}_{2}\right)^{\mathrm{T}} \\
\vdots \\
\boldsymbol{\phi}\left(\boldsymbol{x}_{N}\right)^{\mathrm{T}}
\end{array}\right) \in \mathbb{R}^{N \times M}, \quad \boldsymbol{\theta}^{\mathrm{LMS}}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

Regression with nonlinear basis functions

Polynomial basis functions

$$
\phi(x)=\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots \\
x^{M}
\end{array}\right] \Rightarrow f(x)=\theta_{0}+\sum_{m=1}^{M} \theta_{m} x^{m}
$$

Fitting samples from a sine function: underfitting as $f(x)$ is too simple

Adding high-order terms

M=3

M=9: overfitting

More complex features lead to better results on the training data, but potentially worse results on new data, e.g., test data!

Overfitting

Parameters for higher-order polynomials are very large

	$M=0$	$M=1$	$M=3$	$M=9$
θ_{0}	0.19	0.82	0.31	0.35
θ_{1}		-1.27	7.99	232.37
θ_{2}			-25.43	-5321.83
θ_{3}			17.37	48568.31
θ_{4}				-231639.30
θ_{5}				640042.26
θ_{6}				-1061800.52
θ_{7}				1042400.18
θ_{8}				-557682.99
θ_{9}				125201.43

Overfitting can be quite disastrous

Fitting the housing price data with $M=7$

Note that the price would go to zero (or negative) if you buy bigger ones! This is called poor generalization/overfitting.

