Statistical Machine Learning

Pier Francesco Palamara
Department of Statistics
University of Oxford

Slide credits and other course material can be found at:

http://www.stats.ox.ac.uk/~palamara/SML20_BDI.html

http://www.stats.ox.ac.uk/~palamara/SML20_BDI.html

Bagging and Random Forests

Bagging

Bagang
Model Variability

glu< 123.5
i

ped< (.3095

gluq 166 bmi< 28.65

No Yes

@ Is the tree ‘stable’ if training data were slightly different?

Begging
Bootstrap for Classification Trees

@ The bootstrap is a way to assess the variance of estimators.
@ Fit multiple trees, each on a bootstrapped sample. This is a data set
obtained by sampling with replacement » times from training set.
> n <- nrow(Pima.tr)
> bss <- sample(l:n, n , replace=TRUE)
> sort (bss)
[1] 24456 79 10 11 12 12 12 12 13 13 15 15 20

> tree_boot <- rpart (Pima.tr[bss,8] ~ ., data=Pima.tr[bss,-8],
control=rpart.control (xval=10)) ## 10-fold CV

glu< 1235 lu< 123.5

ped<[0.348

No

lu< [156.5

ped<[0.421
Yes

lu< 164.5 bmi< P8.65

No Yes No Yes

Begging
Bootstrap for Regression Trees

@ Regression for Boston housing data.
@ Predict median house prices based only on crime rate.
@ Use decision stump—the simplest tree with a single split at root.

50
1
8
8
s
8
8

40
L

30
L

MEDIAN HOUSE PRICE
20
I

10

LOG(CRIME)

Begging
Bootstrap for Regression Trees

@ We fit a predictor f(z) on the data {(x;,:)}7,.
@ Assess the variance of f () by taking B = 20 bootstrap samples of the
original data, and obtaining bootstrap estimators
f’e), b=1,....B

@ Each tree /" is fitted on the resampled data (z;,,y;,)?, where each j; is
chosen randomly from {1, ..., n} with replacement.

MEDIAN HOUSE PRICE
MEDIAN HOUSE PRICE

20

I

LOG(CRIME) LOG(CRIME)

@ Bagging (Bootstrap Aggregation): average across all B trees fitted on
different bootstrap samples.

@ Forv=1,...,B:
@ Draw indices (j1, ..., jn) from the set {1,..., n} with replacement.
@ Fit the model, and form predictor f*(z) based on bootstrap sample

(mjl s yj1)7 B ("%’n) yjn)

@ Form bagged estimator

40
I
40

MEDIAN HOUSE PRICE
20
I

MEDIAN HOUSE PRICE
20

LOG(CRIME) LOG(CRIME)

@ Bagging smooths out the drop in the estimate of median house prices.
@ Bagging reduces the variance of predictions, i.e. when taking
expectations over a random dataset D:

Ep[(f(z) —Ep[f(@))’] > Ep[(f5ag(@) —Ep[fpae(2)])’]

Begging
Variance Reduction in Bagging

@ Suppose, in an ideal world, our estimators f° are each based on different
independent datasets of size n from the true joint distribution of X, Y.
@ The aggregated estimator would then be

faq BZf [f()] as B — o

where expectation is with respect to datasets of size n.
@ The squared-loss is:

Ep((Y — fag(X))*|1X = 2] =
=Ep[(Y — f(X))*|X = a] + Ep[(f(X) = fag(X))*| X = 2]
— Ep[(Y — f(X))?|X =2] as B — oc.
Aggregation reduces the squared loss by eliminating variance of f(:c).
@ In bagging, variance reduction still applies at the cost of a small increase
in bias.
@ Bagging is most useful for flexible estimators with high variance (and
low bias).

Begging
Variance Reduction in Bagging

@ Deeper trees have higher complexity and variance.
@ Compare bagging trees of depth 1 and 3.

log(xScrim) log(xScrim)

Bagang
Out-of-bag Test Error Estimation

@ How well does bagging to? Can we estimate generalization performance,
and tune hyperparameters?

@ Answer 1: cross-validation.

i=l =2 =3 =4 =5 =6 =7 =8 =9 =10 i=11 =12

MOEOOOOOE 6000

=®®©006/0000eae

=©®® 0000000006 e

cooleeee®e®®®O®

v=4

@ Foreachv=1,...,V,

o fit fza, On the training samples.
e predict on validation set.

@ Compute the CV error by averaging the loss across all test observations.

12

11

10 i

., V, we have to train

=8

'Bagging

Out-of-bag Test Error Estimation

Bagging and Random Forests

@ But to fit fz,, on the training set for each v = 1,..

on B bootstrap samples!

TARAR | TURUR | TURYR | PARAN
o000 o000 o000 oo000a
ocooo0o0 @000 ® coeee coeee
ocooo0o0 ®©®®®o0 ©0o00® ®©0e®©0e
coo0oo0o0 ®®00® 0e®e®eo0 ©®© 000
©®®o0o0 ocooo0o0 CRCRCCINC) ©®e®e®o0

oOee®e®o oco0oo0o0o0 ©®® 00 coeoe

®©®00o0 ocoo0o0o0 ®©® o o0 ®©® 0 ®o0

©eocoee oeoo0o0 00000 ©ee®0e®o0

ocooee ©0e®eo0 00000 CECECRORC)

©0®o0o0 eoco®0o® 00000 ©e®00e

eocoee ®e®o0e®o0 eeo0 00 ©0co0o00O0

coee®ee ceeee ©eo0e®eo0 00 O0O0O0

RO ceeeoe® 0o0e®eo ©00O0O0oO0

1
2
3
4

V:
V:
V:
V:

@ Answer 2: Out-of-bag test error estimation.

o

=

8
&

(el
@

Out-of-bag Test Error Estimation

@]
- o
S ~
= _1|_©
= -
2 i@
o
© o
= O
n
7]
3 i)
o]
i)
O i\
©
o ~
c RiA
[%2]
1= il
F 2%
jiA

&
o i
o
(0]
2. IO
29
50 O
s
£ 0 > 1
C
2
tt
0 o
2%
 E
et

[%)
S o
Qo

=2

ORORONONONORCNONORONONON.
- A ONONONONONONONONONONCRON:
- S ONONONONONONONONONONORON:

=3

=4

=5

ONONONONONONORONONONONON.
ONONONONONONORCRCNONONON:
©©© 00 00®®®00O0O0®»
— 00 ©©©®©0©000®©® @:»

=6

=7

=8

=9
=10

© 0O 000®®©®0®@:-
— 0 0000®©®©®®©®©®© O

FP (1)

be{3,4,8,10}

fOOb(l‘l) — i

o
=

8
&

(el
@

Out-of-bag Test Error Estimation

@ Idea: test on the “unused” data points in each bootstrap iteration to

estimate the test error.

\/
—©0000e0®0O®e oy

X

=2

=3

SRONONONONONONCNONONCONON.
SHONONONOCHCRORONONONONCR:
ONONONONONONORONONONONON.
ONONONONONONORCRCNONONON:
©©© 00 00®®®00O0O0®»
— 00 ©©©®©0©000®©® @:»

=4

=5

=6

=7

=8

=9
=10

© 0O 000®®©®0®@:-
— 0 0000®©®©®®©®©®© O

>)
be{2,8,10}

fOOb(xg) _ %

Bagang
Out-of-bag Test Error Estimation

@ Foreachi=1,...,n, the out-of-bag sample is:

B; = {b: z; is not in training set} C {1, ...

@ Construct the out-of-bag estimate at z;:

foP(ai) = " (i7)

9 =
N
~

| z| beB;

@ Out-of-bag risk:

1 & .
Roob _ E ZL(yiafOOb(-Ti))
=1

Bagang
Out-of-bag Test Error Estimation

@ We need | B;| to be reasonably large foralli = 1,...,n.
@ The probability 7°° of an observation NOT being included in a bootstrap
sample (41, ..., Jj,) (@nd hence being ‘out-of-bag’) is:

n 1 1
oob n—qo
:” 1—— — - == 0.367.
" i=1 < n) ¢
@ Hence E[| B;|] ~ 0.367B

@ In practice, number of bootstrap samples B is typically between 200 and
1000, meaning that the number | B;| of out-of-bag samples will be
approximately in the range 70 — 350.

@ The obtained test error estimate is asymptotically unbiased for large
number B of bootstrap samples and large sample size n.

Begging
Example: Boston Housing Dataset

@ Apply out of bag test error estimation to select optimal tree depth and
assess performance of bagged trees for Boston Housing data.

@ Use the entire dataset with p = 13 predictor variables.

n <- nrow (BostonHousing) ## n samples

X <- BostonHousing[,-14]

Y <- BostonHousing[, 14]

B <- 100

maxdepth <- 3

prediction_oob <- rep(0,length(Y)) ## vector with oob predictions

numbertrees_oob <- rep(0,length(Y)) ## number pf oob trees

for (b in 1:B) { ## loop over bootstrap samples
subsample <- sample(l:n,n, replace=TRUE) ## "in-bag" samples
outofbag <- (1l:n) [-subsample] ## "out-of-bag" samples

fit tree on "in-bag" samples

treeboot <- rpart(Y ~ ., data=X, subset=subsample,

control=rpart.control (maxdepth=maxdepth,minsplit=2))
predict on oob-samples
prediction_oob[outofbag] <- prediction_oob[outofbag] +
predict (treeboot, newdata=X[outofbag,])
numbertrees_oob[outofbag] <- numbertrees_oob[outofbag] + 1
}
final oob-prediction is average across all "out-of-bag" trees
prediction_oob <- prediction_oob / numbertrees_oob

Begging
Example: Boston Housing Dataset

plot (prediction_oob, Y, x1ab="PREDICTED", ylab="ACTUAL")

For depth d = 1.

ACTUAL

8
8

0
I

20 25 30

PREDICTED

For depth d = 10.

ACTUAL

10 20 30 40

PREDICTED

Begging
Example: Boston Housing Dataset

@ Out-of-bag error as a function of tree depth d:
treedepthd | 1 2 3 4 5 10 30

single tree f 60.7 448 328 312 277 265 27.3
baggedtreesfgag 434 27.0 228 215 20.7 20.1 201

@ Without bagging, the optimal tree depth seems to be d = 10.
@ With bagging, we could also take the depth up to d = 30.

Summary:
@ Bagging reduces variance and prevents overfitting
@ Often improves accuracy in practice.

@ Bagged trees cannot be displayed as nicely as single trees and some of
the interpretability of trees is lost.

EECEICEUGIEU I ZI S Ml | Random Forests:

Random Forests

Random Forests and Extremely Randomized Trees

@ Random forests are similar to bagged decision trees with a few key
differences:

For each split point, the search is not over all p variables but just over miry
randomly chosen ones (where e.g. miry = |p/3])

No pruning necessary. Trees can be grown until each node contains just
very few observations (1 or 5).

Random forests tend to produce better predictions than bagging.

Results often not sensitive to the only tuning parameter miry.
Implemented in randomForest library.

@ Even more random methods, e.g. extremely randomized trees:

For each split point, sample mtry variables each with a random value to
split on, and pick the best one.
Often works even when mtry equals 1!

@ Often produce state-of-the-art results, and top performing methods in
machine learning competitions.

Breiman (2001),|Geurts et al (2006)

http://link.springer.com/article/10.1023/A:1010933404324
http://link.springer.com/article/10.1007/s10994-006-6226-1

Random Forests

TABLE 2
Test set misclassification error (%)

Data set Forest Single tree
Breast cancer 2.9 5.9
Tonosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6
Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle x103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

From Breiman, Statistical Modelling: the two cultures, 2001.

http://projecteuclid.org/euclid.ss/1009213726

Random Forests

Comparison of 179 classifiers on 121 datasets. Random forests come top
with SVMs close behind.

| Rank ‘ Acc. ‘ K | Classifier
32.9 | 820 | 63.5 parRF_t (RF)
33.1 82.3 | 63.6 rf_t (RF)
368 | 81.8 | 62.2 svm_C (SVM)
38.0 | 81.2 | 60.1 svmPoly_t (SVM)
39.4 81.9 | 62.5 rforest_R (RF)
39.6 82.0 62.0 elm _kernel_.m (NNET)
40.3 81.4 61.1 svmRadialCost_t (SVM)
42.5 81.0 60.0 svmRadial t (SVM)
429 | 80.6 | 61.0 C5.0_t (BST)
441 | 794 | 605 avNNet_t (NNET)

From Delgado et al, 2014

http://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf

EECEICEUGIEU I ZI S Ml | Random Forests:

Looking at the Boston Housing data again (and at the help page for
randomForest first).

library (randomForest)

library (MASS)

data (Boston)

y <- Boston][,14]
x <-— Boston[,1:13]

?randomForest

EECEICEUGIEU I ZI S Ml | Random Forests:

> randomForest package:randomForest R Documentation
Classification and Regression with Random Forest

Description:
"randomForest’ implements Breiman’s random forest algorithm (based
on Breiman and Cutler’s original Fortran code) for classification
and regression. It can also be used in unsupervised mode for
assessing proximities among data points.

Usage:
S3 method for class ’formula’:
randomForest (formula, data=NULL, ..., subset, na.action=na.fail)

Default S3 method:
randomForest (x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,
mtry=if (!is.null(y) && !is.factor(y))

max (floor (ncol (x)/3), 1) else floor(sgrt (ncol (x))),
replace=TRUE, classwt=NULL, cutoff, strata,

sampsize = if (replace) nrow(x) else ceiling(.632xnrow (x)
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,

importance=FALSE, localImp=FALSE, nPerm=1,
proximity=FALSE, oob.prox=proximity,

norm.votes=TRUE, do.trace=FALSE,

keep.forest=!is.null (y) && is.null (xtest), corr.bias=FALS
keep.inbag=FALSE, ...)

EECEICEUGIEU I ZI S Ml | Random Forests:

Boston Housing data, again.

200 700

mtotapototintms:

R (EAd 18 E R IR[E]
b [11 1 i) B T I B
1000000000000
I PR)
B P B [V) [] o o B] e
) AR AR Y RN A Nk alli
Ll N (-) L e (B
N 9P 0 Pt e o e
U o) L b] i e [sl []
Pl Fil] B g -/ E .
O DERDAONE - EE
) ol i o 0 ol] 1 il B [~ R
LI bl TR SRR Ld by

EECEICEUGIEU I ZI S Ml | Random Forests:

> rf <- randomForest (x,Vy)
> print (rf)
>
Call:
randomForest (x = x, v = V)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 10.26161
% Var explained: 87.84

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot (predict (rf), vy)
> abline(c(0,1),col=2)

Same if treating the training data as new data

> plot (predict (rf,newdata=x), V)

EECEICEUGIEU I ZI S Ml | Random Forests:

Out-of-bag error. Training error.

> plot (predict(rf), vy)

> abline (c(0,1),col=2) > plot (predict (rf,newdata=x), vy)

> abline(c(0,1),col=2)

10 20 30 40

predict(rf) 10 20 30 40 50

predict(rf, newdata = x)

EECEICEUGIEU I ZI S Ml | Random Forests:

Try mtry 2

> (rf <- randomForest (x,y,mtry=2))
Call:

randomForest (x = x, y = vy, mtry = 2)

Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 2

Mean of squared residuals: 12.17176
% Var explained: 85.58

Try mtry 4

> (rf <- randomForest (x,y,mtry=4))
Call:
randomForest (x = x, y =y, mtry = 4)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 10.01574

o

% Var explained: 88.14

EECEICEUGIEU I ZI S Ml | Random Forests:

And mtry 8 and 10.

> (rf <- randomForest (x,y,mtry=8))
Call:
randomForest (x = x, y = vy, mtry = 8)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 8

Mean of squared residuals: 9.552806
% Var explained: 88.68

> > (rf <- randomForest (x,y,mtry=10)
Call:
randomForest (x = x, y = vy, mtry = 10)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 10

Mean of squared residuals: 9.774435
% Var explained: 88.42

mtry is the only real tuning parameter and typically performance not sensitive
to its choice (can use tuneRF to select it automatically).

EECEICEUGIEU I ZI S Ml | Random Forests:

Variable “Importance”

@ Tree ensembles have better performance, but decision trees are more
interpretable.

@ How to interpret a forest of trees ?

Idea: denote by é the out-of bag estimate of the loss when using the original
data samples. For each variable k € {1, ..., p},
@ permute randomly the k-th predictor variable to generate a new set of
samples (X1, Y1), ..., (X, Y,), i.e, X = Xf(:)), for a permutation 7.
@ compute the out-of-bag estimate é, of the prediction error with these new
samples.
A measure of importance of variable & is then é; — é, the increase in error rate
due to a random permutation of the &-th variable.

Example for Boston Housing data.

rf <- randomForest (x,y, importance=TRUE)
varImpPlot (rf)

Istat
dis o
nox o
crim °
ptratio o

age °

tax °

indus °

black °

rad °

chas °

zn o

T T T T T
5 10 15 20 25

%IncMSE

Ensemble Methods

@ Bagging and random forests are examples of ensemble methods, where
predictions are based on an ensemble of many individual predictors.

@ Many other ensemble learning methods: boosting, stacking, mixture of
experts, Bayesian model combination, Bayesian model averaging etc.

@ Often gives significant boost to predictive performance.

EECEICEUGIEU I ZI S Ml | Random Forests:

Microsoft Kinect Pose Recognition

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BodyPartRecognition.pdf
https://www.youtube.com/watch?v=lntbRsi8lU8

	Decision trees
	Bagging and Random Forests
	Bagging
	Random Forests

