Statistical Machine Learning

Pier Francesco Palamara
Department of Statistics
University of Oxford

Slide credits and other course material can be found at:

http://www.stats.ox.ac.uk/~palamara/SML20_BDI.html

http://www.stats.ox.ac.uk/~palamara/SML20_BDI.html

Plug-in Classification

@ Consider the 0-1 loss and the risk:
K
{ (Y, (X)X = x} 3" Lk, f(2)P(Y = kX = z)
k=1

The Bayes classifier provides a solution that minimizes the risk:

feayes(z) = argmaxmygr(x).
k=1,.. K

@ We know neither the conditional density g, nor the class probability 7!
@ The plug-in classifier chooses the class

f(z) = arg max T gk (),
k=1,....K

@ where we plugged in
o estimates 7, of 7, and k =1,..., K and
o estimates g () of conditional densities,

@ Linear Discriminant Analysis is an example of plug-in classification.

Summary: Linear Discriminant Analysis

@ LDA: a plug-in classifier assuming multivariate normal conditional density
gx(z) = gr(x|pr, X) for each class k sharing the same covariance X:

1
anlalpn, 2) =) S e (— o =) T =))

@ LDA minimizes the squared Mahalanobis distance between x and iy,
offset by a term depending on the estimated class proportion 7:

fioa(z) = argmax log Ty (|fik, &)
ke{l,...,K}
o (1 = 1Ar§1A) (AflA)T
= gmax | logmy Ly pe)+ 12 k)
ke{l,...K} 2

terms depending on k linear in =

1 ~
= argmin —(z —ix) 'Sz — fx) — log 7.
ke{l,...K} 2

squared Mahalanobis distance

Discriminant analysis

LDA projections

| .

Feature 2

y

Feature 1

Figure by R. Gutierrez-Osuna

Dis

analysis

LDA vs PCA projections

-2

LDA separates the groups better.

Comp.2

-0.05 0.00 0.05 0.10 0.15

-0.10

i +
N Lo e R
° &
4 + °ob o
+ oo, o
+ T o
+f T %wﬁ 4o © ° 00
+ 4 ¥
+ Toeat B °
7 " IR, R o
AR e ¥
N + PR
i + & °
. °
IN a4
NS X,
UL N
il A A x x
x " EA& a g N a
x M A x Loxox
A x x% P . a
B % A% & KAx % x4
x X£x xa &%
N x
T T T T T T
-1.0 -05 0.0 05 10 15
Comp.1

Fisherfaces

Eigenfaces vs. Fisherfaces, Belhumeur et al. 1997

http://ieeexplore.ieee.org/document/598228/

http://ieeexplore.ieee.org/document/598228/

'Quadratic Discriminant Analysis
Conditional densities with different covariances

Given training data with K classes, assume a parametric form for conditional
density gx(x), where for each class

XY =k ~ N(ug,2r),

i.e., instead of assuming that every class has a different mean u;, with the
same covariance matrix > (LDA), we now allow each class to have its own
covariance matrix.

Considering log g (z) as before,

log myge(z) = const+log(my) — % (log [Sk| + (& —)" S5 (@ — a))
= const + log(my) — % (log [Sk| + p s ,uk)
+up St — %xTEglx
= ak—|—bka:—|—x CLT.

A quadratic discriminant function instead of linear.

'Quadratic Discriminant Analysis
Quadratic decision boundaries

Again, by considering that we choose class k over &/,

ar +blz + alcpx — (ap + Lz + 2T e)

= a, +bfx+xTc*x >0

we see that the decision boundaries of the Bayes Classifier are quadratic
surfaces.

@ The plug-in Bayes Classifer under these assumptions is known as the
Quadratic Discriminant Analysis (QDA) Classifier.

Discriminant analysis \Quadratic Discriminant Analysis\

QDA
LDA classifier:
fion(z) = argmin {(m) TS N — i) — 2log(%k)}
ke{1,....K}
QDA classifier:

~

faoa(z) = argmin {(z =)" Sk (@ — fix) — 2log(Fr) + log(IS]) |
ke{1,....K}

for each point = € X where the plug-in estimate i, is as before and %, is (in
contrast to LDA) estimated for each class k = 1, ..., K separately:

1 R R
Xp=— > (s — i) (g — ix) "
§ Jyj=k

Discriminant analysis \Quadralic Discriminant Analysis\

Computing and plotting the QDA boundaries.

##fit QDA
iris.gda <- gda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)

<- seq(-4,4,0.02)

<- as.matrix (expand.grid(x,y),0)

<- length (x)

<- length (y)

508 NN

iris.qdp <- predict (iris.qgda, z)$class
contour (x,y,matrix(iris.qgdp,m,n),
levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)

\Quadralic Discriminant Analysis\
Iris example: QDA boundaries

2 o oo
. .
ETTIEr
.o
. csee o
S cone
e o .
e s e e o
o .
- e e .
5 9 o ese eoe
‘§ . o soe .
9 o essecss
< o s o o
3] . .o
[8 311: ol e e s oo
.
e 4 .
o
.
. e
T T f T T T
1 2 3 4 5 6

Petal.Length

\Quadralic Discriminant Analysis\
Iris example: QDA boundaries

2.0
1

1.5

Petal.Width

1.0

0.5

Petal.Length

@ Having seen both LDA and QDA in action, it is natural to ask which is the
“better” classifier.

@ If the covariances of different classes are very distinct, QDA will probably
have an advantage over LDA.

@ Parametric models are only ever approximations to the real world,
allowing more flexible decision boundaries (QDA) may seem like a
good idea. However, there is a price to pay in terms of increased
variance and potential overfitting.

'Quadratic Discriminant Analysis
Regularized Discriminant Analysis

In the case where data is scarce, to fit

@ LDA, need to estimate K x p 4+ p x p parameters

@ QDA, need to estimate K x p + K X p X p parameters.
Using LDA allows us to better estimate the covariance matrix ¥. Though QDA
allows more flexible decision boundaries, the estimates of the K covariance
matrices X, are more variable.
RDA combines the strengths of both classifiers by regularizing each
covariance matrix X in QDA to the single one X in LDA

Yp(a)=aXp + (1 —a)X forsome a € [0,1].
This introduces a new parameter « and allows for a continuum of models

between LDA and QDA to be used. Can be selected by Cross-Validation for
example.

Logistic regression

Review

@ In LDA and QDA, we estimate p(z|y), but for classification we are mainly
interested in p(y|z)

@ Why not estimate that directly? Logistic regression’ is a popular way of
doing this.

"Despite the name “regression”, we are using it for classification!

Logistic regression

@ One of the most popular methods for classification
@ Linear model on the probabilities

@ Dates back to work on population growth curves by Verhulst [1838, 1845,
1847]

@ Statistical use for classification dates to Cox [1960s]

@ Independently discovered as the perceptron in machine learning
[Rosenblatt 1957]

@ Main example of “discriminative” as opposed to “generative” learning

@ Naive approach to classification: we could do linear regression assigning
specific values to each class. Logistic regression refines this idea and
provides a more suitable model.

Logistic regression

@ Statistical perspective: consider) = {0, 1}. Generalised linear model
with Bernoulli likelihood and logit link:

Y|X =x,a,b~ Bernoulli (s(a+ b))

TN 1
s(la+b'z)= e e pER ATV

0 . . .
-8 -6 -4 -2 0 2 4 6 8

@ ML perspective: a discriminative classifier. Consider binary
classification with)y = {+1, —1}. Logistic regression uses a parametric
model on the conditional Y'|.X, not the joint distribution of (X,Y):

1
T+ exp(—y(a+bTx))°

p(Y =y|X =2;0,0) =

Logistic regression

Prediction Using Logistic Regression

Hard vs Soft classification rules

@ Consider using LDA for binary classification with) = {+1, —1}.
Predictions are based on linear decision boundary:

~ ~

Goa(e) = sign {log7 1941 (alfisr, 8) ~ log 7191 (alfi1, %) |
= sign{a+b'z}

for a and b depending on fitted parameters 6 = (741, 71, fip1, i1,).

@ Quantity a + b = can be viewed as a soft classification rule. Indeed, it is
modelling the difference between the log-discriminant functions, or
equivalently, the log-odds ratio:

a+b'r= logp(Y =X = x,?\)
p(Y = -1|X =z;0)

@ f(x) =a+ bz corresponds to the “confidence of predictions” and loss
can be measured as a function of this confidence:
o exponential loss: L(y, f(z)) = e ¥/,
e log-loss: L(y, f(x)) = log(1 + e~ ¥/ (),
@ hinge loss: L(y, f(z)) = max{l — yf(z),0}.

Logistic regression

Linearity of log-odds and logistic function

@ a + b2z models the log-odds ratio:

p(Y =+1|X = x;a,b) T
= b x.

p(Y = —-1|X = z;a,b) arbw

log

@ Solve explicitly for conditional class probabilities (using
p(Y =+11X =z;a,0) + p(Y = —=1|X = z;a,b) = 1):

1
YV =+1|X = z;a,b) = = b’
p(i % a,0) 1+exp(—(a+bTx)) sla+b a)
1
=s(—a—b'x)

Y =—-1|X = ux; =
p(‘ x,a,b) 1+exp(+(a+bT:c))
where s(z) = 1/(1 + exp(—=z)) is the logistic function.

.
L/

Fitting the parameters of the hyperplane

How to learn a and b given a training data set (z;, y;)I,?
@ Consider maximizing the conditional log likelihood for Y = {+1, —1}:

s(a+bTa; if V=41
p(Y:y”X:x““’b):p(y”””i):{ 1(— s(a+b)T:ci) if v=-1

@ Noting that 1 — s(z) = s(—z), we can write the log-likelihood using the
compact expression:

log p(yi|xi) = log s(yi(a + b))

@ And the log-likelihood over the whole i.i.d. data set is:

(a,b) = Z log p(yi|zi) = Z log s(yi(a+b'z;)).
i=1

i=1

Fitting the parameters of the hyperplane

How to learn « and b given a training data set (z;, y;),?
@ Consider maximizing the conditional log likelihood:

l(a,b) = Z log p(yi|x;) = Z log s(yi(a + b z;)).
i=1 i=1
@ Equivalent to minimizing the empirical risk associated with the log loss:
~ 1< 1<
Riog(fap) = > ~logs(yi(a+bT ;) = — 3 log(1+exp(—yi(a+b ,)))

; n <
i=1 =1

— Zero-one loss
— Hinge loss
— Logistic loss

Lly;, £(x;))

EY 1
v flx;)

Could we use the 0-1 loss?

@ With the 0-1 loss, the risk becomes:

R(fap) = Zstep —yi(a+0"2;))

@ But what is the gradient? ...

Logistic Regression

@ Log-loss is differentiable, but it is not possible

to find optimal a, b analytically. Logistic Function

@ For simplicity, absorb a as an entry in b by (2)=1-s(z)
appending "1’ into « vector, as we did before. Ls(2) = ()s(—2)
@ Objective function: V. logs(z) = s(—2)
- V2logs(z) = —s(2)s(—=

~ 1
Rlog = o Z —log S(Qixin)

i=1

@ Differentiate wrt b:
~ 1 &
ViRiog =— > _ —s(—yiz] b)yiz;
bLllog n 4 s(—yiz; b)yiw

~ 1
Vi Riog = > slyiw! b)s(—ysw] bz = 0.

@ We cannot set Vb]%og = 0 and solve: no closed form solution. We’ll use
numerical methods.

Gradient Descent

fiw)

Start at a random point

Repeat
Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

W* e W2 Wi Wo

Where Will We Converge?

fiw) Convex g(w) Non-convex

o

W w W W w
Any local minimum is a global minimum Multiple local minima may exist

Least Squares, Ridge Regression and
Logistic Regression are all convex!

(oo dssoeit
Convexity

How to determine convexity? f(z) is convex if
f@)=0

Examples: f@)=2%f (x)=2>0

How to determine convexity in this case?
Matrix of second-order derivatives (Hessian)

9% f(z) 9*f (@) 9’ f (@)

dx12 Ox10x2 *tt OxOxp

3f(m) O f(x) 9% f ()

H= Ox10x2 03 *tt OQxo0xp
.éz‘f(w) 'ééf(w) - .<9’2.f(w)

Ox10xp Or20xp 8zD2
How to determine convexity in the multivariate case?
If the Hessian is positive semi-definite H > 0, then f is convex.
A matrix H is positive semi-definite if and only if, vz,
zTHz = ZHj,kszk >0
7.k

Logistic Regression

@ Hessian is positive-definite: objective function is convex and there is a
single unique global minimum.
@ Many different algorithms can find optimal b, e.g.:
o Gradient descent:

new __ l o T .
b —b+en25(yix; b)yi;

1=1
e Stochastic gradient descent:

phew — b+ e

1 T
0] Z s(—yiz; b)yixi

iel(t)

where I(t) is a subset of the data at iteration ¢, and ¢, — 0 slowly
>, e =003, € < oo).
e Conjugate gradient, LBFGS and other methods from numerical analysis.
o Newton-Raphson:
D" = b — (ViRig) 'V Riog

This is also called iterative reweighted least squares.

lterative reweighted least squares (IRLS)

@ We can write gradient and Hessian in a more compact form. Define
wi = s(z; b), and the diagonal matrix S with y;(1 — y;) on its diagonal.
Also define the vector ¢ where ¢; = 1(y; = +1). Then

n

~ 1
Vi Riog = > —s(—yix] by,
i=1

f—gx i —C)

= XT(M)

Vi Riog = Z s(yix] b)s(—ysx] b)wx]

i=1

=XTSX

—_

lterative reweighted least squares (IRLS)

Let b, be the parameters after ¢ “Newton steps”.
The gradient and Hessian at step ¢ are given by:

gt = XT(Ht - C) = _XT(C — 1)
H, = XS, X

The Newton Update Rule is:

by =b, — H; 'g
=b; + (XS X) "' XT(c — py)
= (XTS:X) ' XTS(Xb; + S; (¢ — 1))
= (XT8;X)"'XTS,z,

Where z; = Xb; + S; *(c — p,;). Then b, is a solution of the “weighted least

squares” problem:
N

minimise Z Syii(zr —b1x;)?

i=1

Linearly separable data

Assume that the data is linearly separable, i.e. there is a scalar « and a vector
3 such that y; (o + 8T 2;) > 0,7 =1,...,n. Let ¢ > 0. The empirical risk for
a=ca,b=cpis

Rag(fos) = £ 3 log(1 + exp(—cp(a -+ 872)

=1

which can be made arbitrarily close to zero as ¢ — oo, i.e. soft classification
rule becomes +oco (overconfidence) — overfitting.

Regularization provides a solution to this problem.

Multi-class logistic regression

The multi-class/multinomial logistic regression uses the softmax function to
model the conditional class probabilities p (Y = k| X = z;0), for K classes
k=1,...,K,i.e.,

exp (w;x + bk)
Sy exp (w] @+ be)

Parameters are 6 = (b, W) where W = (wy;) is @ K x p matrix of weights and
b € R¥ is a vector of bias terms.

p(Y =kl X =ux;0) =

Logistic regression

Multi-class logistic regression

Crab Dataset

library (MASS)

load crabs data

data (crabs)

ct <- as.numeric(crabs[,1])-1+2x (as.numeric (crabs[,2])-1)
project into first two LD

cb.lda <- lda(log(crabs[,4:8]),ct)

cb.ldp <- predict (cb.lda)

x <— cb.ldp$x[,1:2]

y <- as.numeric (ct==0)

egscplot (x,pch=2xy+1, col=y+1)

Crab Dataset

visualize decision boundary

gxl <- seq(-6,6,.02)

gx2 <- seq(-4,4,.02)

gx <- as.matrix(expand.grid(gxl,gx2))

gm <- length (gxl)

gn <- length (gx2)

gdf <- data.frame (LDl=gx[,1],LD2=gx[,2])

lda <- lda(x,y)

y.lda <- predict (lda, x)S$class

egscplot (x,pch=2%y+1,col=2-as.numeric (y==y.lda))

y.lda.grid <- predict (lda,gdf) $class

contour (gxl,gx2,matrix (y.lda.grid, gm, gn),
levels=c(0.5), add=TRUE,d=FALSE, lty=2, lwd=2)

Crab Dataset

logistic regression
xdf <- data.frame (x)
logreg <- glm(y ~ LDl + LD2, data=xdf, family=binomial)
y.lr <- predict (logreg, type="response")
egscplot (x,pch=2xy+1, col=2-as.numeric (y==(y.lr>.5)))
y.lr.grid <- predict (logreg,newdata=gdf, type="response")
contour (gxl,gx2,matrix(y.lr.grid, gm,gn),
levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE,lty=3,1lwd=1)
contour (gxl,gx2,matrix(y.lr.grid, gm,gn),
levels=c(.5), add=TRUE,d=FALSE, lty=1, lwd=2)

logistic regression with quadratic interactions
logreg <- glm(y ~ (LDl + LD2)"2, data=xdf, family=binomial)
y.lr <- predict (logreg, type="response")
egscplot (x, pch=2xy+1, col=2-as.numeric (y==(y.lr>.5)))
y.lr.grid <- predict (logreg, newdata=gdf, type="response")
contour (gxl,gx2,matrix(y.lr.grid, gm,gn),
levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE,lty=3,lwd=1)
contour (gxl,gx2,matrix(y.lr.grid, gm,gn),
levels=c(.5), add=TRUE,d=FALSE, lty=1, lwd=2)

Crab Dataset : Blue Female vs. rest

< < 4
e %
o » ~ o
og °
&
& Pad
® g
ot -
° o Eid ©
° ,tK +
S
+ J{t + +
~ PRagire: 4 + o~ .
0 2 + 4 I
e TR
- e F s
. has
<] ," # < |
i . y
+
T T T T T T T
-4 -2 0 2 4 6 -4

Comparing LDA and logistic regression.

Crab Dataset

Comparing logistic regression with and without quadratic interactions.

Logistic regression Python demo

Single-class: https://github.com/vkanade/mlmt2017/blob/
master/lecturell/Logistic%$20Regression.ipynb

Multi-class: lhttps://github.com/vkanade/mlmt2017/blob/master/
lecturell/Multiclass%20Logistic%20Regression.ipynb

https://github.com/vkanade/mlmt2017/blob/master/lecture11/Logistic%20Regression.ipynb
https://github.com/vkanade/mlmt2017/blob/master/lecture11/Logistic%20Regression.ipynb
https://github.com/vkanade/mlmt2017/blob/master/lecture11/Multiclass%20Logistic%20Regression.ipynb
https://github.com/vkanade/mlmt2017/blob/master/lecture11/Multiclass%20Logistic%20Regression.ipynb

	Discriminant analysis
	Quadratic Discriminant Analysis

	Logistic regression
	Logistic Regression

	Logistic regression
	Gradient descent

