
Statistical Machine Learning HT 2020 - Problem Sheet 4
Please send any comments or corrections to Pier Palamara (email on course website).

1. Tree Learning: Gini. Consider a binary classification problem with Y = {1, 2}. We are at a
node t in a decision tree and would like to split it based on Gini impurity. Consider a categorical
attribute A with L levels, i.e., x(A) ∈ {a1, a2, ..., aL}. For a generic example (Xi, Yi) reaching
node t, denote:

pk = P (Yi = k) , k = 1, 2,

q` = P
(
X

(A)
i = a`

)
, ` = 1, . . . , L,

pk|` = P
(
Yi = k|X(A)

i = a`

)
, k = 1, 2, and ` = 1, . . . , L.

Thus, the population Gini impurity is given by 2p1(1 − p1). Further, assume N = n examples
{(Xi, Yi)}ni=1 have reached the node t, and denote

Nk = |{i : Yi = k}| , k = 1, 2,

N` =
∣∣∣{i : X

(A)
i = a`

}∣∣∣ , ` = 1, . . . , L,

Nk|` =
∣∣∣{i : Yi = k and X(A)

i = a`

}∣∣∣ , k = 1, 2, and ` = 1, . . . , L.

(a) Assuming data vectors reaching node t are independent, explain whyN`|N = n,Nk|N = n
and Nk|`|N` = n` have respectively multinomial, binomial and binomial distributions with
parameters q`, pk and pk|`.

(b) If we split using attribute A (and are not using dummy variables) we will have an L-way
split and the resulting impurity change will be

∆Gini = 2p1(1− p1)− 2
L∑

`=1

q`p1|`(1− p1|`)

The parameters pk, q` and pk|` are unknown, however. The Gini impurity estimate ∆̂Gini is
thus computed using the plug-in estimates p̂k = Nk/N, q̂` = N`/N and p̂k|` = Nk|`/N`

respectively. Calculate the expected estimated impurity change E[∆̂Gini|N = n] between
node t and its L child-nodes, conditioned on N = n data vectors reaching node t.

(c) Suppose the attribute-levels are actually uninformative about the class label, so that pk|` =
pk. Show that, conditioned on N = n, the expected estimated Gini impurity change is then
equal

2p1(1− p1)(L− 1)/n.

(d) Is this attribute selection criterion biased in favor of attributes with more levels?

1

2. Neural networks: backpropagation. Recall the definition of a one-hidden layer neural network
for binary classification in the lectures. The objective function is L2-regularized log loss:

J = −
n∑

i=1

yi log ŷi + (1− yi) log(1− ŷi) +
λ

2

∑
jl

(wh
jl)

2 +
∑
l

(wo
l)2

and the network definition is:

ŷi = s

(
bo +

m∑
l=1

wo
l hil

)
, hil = s

bhl +

p∑
j=1

wh
jlxij

 ,

with transfer function s(a) = 1
1+e−a .

(a) Verify that the derivatives needed for gradient descent are:

∂J

∂wo
l

= λwo
l +

n∑
i=1

(ŷi − yi)hil,

∂J

∂wh
jl

= λwh
jl +

n∑
i=1

(ŷi − yi)wo
l hil(1− hil)xij .

(b) Suppose instead that you have a neural network for binary classification with L hidden lay-
ers, each hidden layer having m neurons with logistic transfer function. Give the parameter-
ization for each layer, and derive the backpropagation algorithm to compute the derivatives
of the objective with respect to the parameters. For simplicity, you can ignore bias terms.

3. AdaBoost (ESL). Solve exercises 10.1 (optimal β) and 10.2 (connection between exponential
loss and log-odds) of the “Elements of Statistical Learning” book, which is freely available
at https://web.stanford.edu/˜hastie/ElemStatLearn/printings/ESLII_
print12.pdf.

4. Coding: Biplots, Trees, Random Forests. Download the wine dataset from
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

and load it using read.table("wine.data",sep=","). Description of the dataset is
given at https://archive.ics.uci.edu/ml/datasets/Wine.

(a) Make a biplot using the scale=0 option, and then use the xlabs=as.numeric(td$Type)
option in biplot to label points by their $Type. The output should look like:

2

https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
https://archive.ics.uci.edu/ml/datasets/Wine

−4 −2 0 2 4

−
4

−
2

0
2

4

Comp.1

C
om

p.
2

1

1

1

1

1

1

1
1

11

1

11
1

1
1

1

1

1

1
1

1
1

1
1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1
11

1

1

2

2

2
2

2 2

2

2

2

2

2

22 2

2

2

2
2

2

2
2

2

2

2

2

2

2
22

2

2

2
2

2

22

2

2

2

2

2
2 2

2

2

2
2

2

2

2

22

2

2

2
2

2

2

2

2

2

2

2

22

2

2

2 2

2

2

3
3 33

3

3
3

3
33 33 33

3

3 3

3
3
3

3
3

3

3

3

33

3

3

3

3
3

33

3

3

3

3

3

3

3

3

3 3
3

3
3

3

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

V2

V3

V4

V5

V6

V7

V8
V9V10

V11

V12

V13

V14

(b) Now train a classification tree using rpart, and relate the decision rule discovered there to
the projections of the original variable axes displayed in the biplot. Give the plots of the tree
as well as of the cross-validation results in rpart object using plotcp.

(c) Now produce a Random Forest fit, calculating the out-of-bag estimation error and compare
with the tree analysis. You could start using:

library(randomForest)
rf <- randomForest(td[,2:14],td[,1],importance=TRUE)
print(rf)

Use tuneRF to find an optimal value of mtry, the number of attribute candidates at each
split. Use varImpPlot to determine what are the most important variables.

5. Coding: Neural networks. In this question you will investigate fitting neural networks using the
nnet library in R. We will train a neural network to classify handwritten digits 0-9. Download
files usps trainx.data, usps trainy.data, usps testx.data, usps testy.data
from
http://www.stats.ox.ac.uk/˜palamara/teaching/SML19/.

First, you’ll need to make sure that the nnet library is installed. Use install.packages("nnet")
and select a package repository (CRAN mirror) nearby.

You can load the data files using read.table(...). If you need more help getting started,
consult slide 59 of the notes available at http://www.stats.ox.ac.uk/˜evans/statprog/
prog_slid_ho.pdf.

Each handwritten digit is 16 × 16 in size, so that data vectors are p = 256 dimensional and each
entry (pixel) takes integer values 0-255. There are 2000 digits (200 digits of each class) in each of
the training set and test set.

You can view the digits with:

plot_digit = function(x,y) {
input x should be a numeric vector of length 256
image(matrix(as.matrix(x), 16,16), col=grey(seq(0,1,length=256)),

3

http://www.stats.ox.ac.uk/~palamara/teaching/SML19/
http://www.stats.ox.ac.uk/~evans/statprog/prog_slid_ho.pdf
http://www.stats.ox.ac.uk/~evans/statprog/prog_slid_ho.pdf

main=sprintf("Label: %d",y))
}
plot_digit(trainx[500,],trainy[500,])

Download the R script nnetusps.R from http://www.stats.ox.ac.uk/˜palamara/
teaching/SML19/nnetusps.R. The script trains a 1-hidden layer neural network with
S = 10 hidden units for T = 10 iterations, reports the training and test errors, runs it for another
10 iterations, and reports the new training and test errors. To make computations quicker, the script
down-samples the training set to 200 cases, by using only one out of every 10 training cases. You
will find the documentation for the nnet library useful: http://cran.r-project.org/
web/packages/nnet/nnet.pdf.

(a) Edit the script to report the training and test error after every iteration of training the network.
Use networks of size S = 10 and up to T = 100 iterations. Plot the training and test errors
as functions of the number of iterations. Discuss the results and the figure.

(b) Edit the script to vary the size of the network, reporting the training and test errors for
network sizes S = 1, 2, 3, 4, 5, 10, 20, 40. Use T = 25 iterations. Plot these as a function of
the network size. Discuss the results and the figure.

(c) Optional. Can you get a significant performance increase by adding multiple layers? To in-
vestigate, you’ll need to switch to the package neuralnet. Here is code to run neuralnet
with one hidden layer, check the documentation (in R type ?neuralnet) to see how to add
more layers.

library(neuralnet)
data = cbind(class.ind(trainy),trainx)
names(data)[1:10] = paste0("label",names(data[1:10]))
fml <- as.formula(paste(paste(paste0(’label’,0:9),collapse=" + "),

’ ˜ ’ ,paste(paste0("V",1:256),collapse=’+’)))

net <- neuralnet(fml, data, err.fct="ce", linear.output=FALSE)

6. Coding (optional): Tensor Flow. This problem is going to give you the chance to try out Ten-
sorFlow, one of a number of popular deep learning packages. TensorFlow must be installed in
python, but once installed there is an R library. Instructions:

• Install TensorFlow using the instructions here: https://www.tensorflow.org/get_
started/os_setup

• Verify that you can use TensorFlow in python:

$ python
>>> import tensorflow
>>>

• If you would like to use R, follow the instructions here: https://github.com/rstudio/
tensorflow

Returning to the digit classification task from the previous problem, try once again to improve
performance using a multi-layer neural network. Hint: use a convolutional layer (conv2d in
TensorFlow).

4

http://www.stats.ox.ac.uk/~palamara/teaching/SML19/nnetusps.R
http://www.stats.ox.ac.uk/~palamara/teaching/SML19/nnetusps.R
http://cran.r-project.org/web/packages/nnet/nnet.pdf
http://cran.r-project.org/web/packages/nnet/nnet.pdf
https://www.tensorflow.org/get_started/os_setup
https://www.tensorflow.org/get_started/os_setup
https://github.com/rstudio/tensorflow
https://github.com/rstudio/tensorflow

