
Statistical Machine Learning HT 2020 - Problem Sheet 2
Please send any comments or corrections to Pier Palamara (email on course website).

1. (Clustering). Let x1, . . . , xn be a dataset of p-dimensional vectors and C = {C1, C2, . . . , CK} a
partition of {1, . . . , n}. For each cluster Ck, denote nk = |Ck| and define

x̄k =
1

nk

∑
i∈Ck

xi to be the within-cluster mean

x̄ =
1

n

K∑
k=1

nkx̄k =
1

n

n∑
i=1

xi to be the overall mean

and

T =

K∑
k=1

∑
i∈Ck

(xi − x̄)(xi − x̄)> to be the total deviance to the overall mean

W =

K∑
k=1

∑
i∈Ck

(xi − x̄k)(xi − x̄k)> to be the within-cluster deviance to the cluster mean

B =

K∑
k=1

nk(x̄k − x̄)(x̄k − x̄)> to be the between-cluster deviance

where T,W and B are all p× p matrices.

(a) Verify that T = W +B.

(b) Explain how the K-means objective is related to the matrix W . Does it depend on all ele-
ments of W?

(c) How does T change during the course of the K-means algorithm? How does B change?

2. (K-means). In lectures we discussed using the Mahalanobis distance to measure distances in
K-means:

‖x− y‖M =
√

(x− y)>M−1(x− y)

where M is a positive definite matrix. Explain why using this distance is equivalent to applying
K-means using the standard Euclidean distance on a transformed data set. What is the choice of
the M matrix that leads to an algorithm which is equivalent to first whitening the data? [Hint:
Consider a linear transformation x 7→ Ax.]

3. (Deviance minimization equivalence). In the lectures, we considered within-cluster deviance
W (Ck, µk) =

∑
i∈Ck
‖xi − µk‖22. Show that

W (Ck, µk) = W (Ck, x̄k) + |Ck| · ‖µk − x̄k‖22

where x̄k = 1
|Ck|

∑
i∈Ck

xi. Hence, conclude thatW (Ck, µk) is minimized for µk = x̄k and show
that

W (Ck, x̄k) =
1

2|Ck|
∑
i,j∈Ck

‖xi − xj‖22.
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4. (Regression loss, squared and absolute). For a given loss function L, the risk R is given by the
expected loss

R(f) = E [L(Y, f(X))] ,

where f = f(X) is a function of the random predictor variable X .

(a) Consider a regression problem and the squared error loss

L(Y, f(X)) = (Y − f(X))2.

Derive the expression of f = f(X) minimizing the associated risk.

(b) What if we use the absolute (L1) loss instead?

L(Y, f(X)) = |Y − f(X)|.

5. (ESL: Train/test). Consider a linear regression model with p parameters, fit with unregularized
linear regression (sometimes called “least squares” or “ordinary least squares” or even just OLS)
to a set of training data (xi, yi)1≤i≤N drawn at random from a population. Let β̂ be the estimator.
Suppose we have some test data (x̃i, ỹi)1≤i≤M drawn at random from the same population as the
training data.

If Rtr(β) = 1
N

∑N
i=1

(
yi − x>i β

)2 and Rte(β) = 1
M

∑M
i=1

(
ỹi − x̃>i β

)2, prove that

E[Rtr(β̂)] ≤ E[Rte(β̂)]

where the expectation is over all that is random in each expression.

6. (Weighted loss). Consider two univariate normal distributions N (µ, σ2) with known parameters
µA = 10 and σA = 5 for class A and µB = 20 and σB = 5 for class B. Suppose class A
represents the random score X of a medical test of normal patients and class B represents the
score of patients with a certain disease. A priori there are 100 times more healthy patients than
patients carrying the disease.

(a) Find the optimal decision rule in terms of misclassification error (0-1 loss) for allocating a
new observation x to either class A or B.

(b) Repeat (a) if the cost of a false negative (allocating a sick patient to group A) is θ > 1
times that of a false positive (allocating a healthy person to group B). Describe how the rule
changes as θ increases. For which value of θ are 84.1% of all patients with disease correctly
classified?

7. (Coding: MDS dissimilarity measure, hierarchical clustering). Download cognate.txt
from http://www.stats.ox.ac.uk/˜palamara/teaching/SML19/cognate.txt and load
it using
X <- read.table("cognate.txt").

It contains an 87×2665 matrix of observations on each of 87 Indo-European languages where the
presence (1) or absence (0) of 2665 homologous traits has been recorded.

Historical linguists have grouped these languages into clades. Most large-scale groupings are
contested, but something like

{Indic, Iranian}

{Balto− Slav, (Germanic, Italic, Celtic)}
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is not too controversial. The position of the Armenian, Greek, Albanian, Tocharian and Hittite
groups is in doubt (though not within the second of the above super-clade).

We would like to cluster the languages into groups on the basis of these data. It is also of interest
to represent the languages in a planar map in order to visualise similarities between languages.

(a) These data are categorical. The Simple Matching Coefficient for two data vectors is the
proportion of variables which are unequal. The Jaccard coefficient for two language data
vectors is the proportion of variables with at least one present which are unequal (so 1100
and 1010 have SMC 2/4 and JC 2/3). Which dissimilarity measure is appropriate for these
data and why?

(b) Run MDS with Sammon mapping using both SMC and Jaccard distance on these data. You
can use
D<-dist(X,method="binary") to compute the Jaccard distances, and
D<-dist(X,method="manhattan") for SMC.

(c) Compute agglomerative clustering of the data using Jaccard with single, average and com-
plete linkage. Plotting the dendrograms with language labels on the leaves, which linkage
algorithm seems to produce sensible results? You can use
hclust(D,method=....) or agnes(D,method=...) for various choices of link-
age (agnes is part of the cluster library, so you have to load using library(cluster)).

8. (Optional: ESL Bayesian L2). (Assumes some knowledge of Bayesian statistics.) We are per-
forming linear regression using the squared loss, but we place a Gaussian prior on the vector of
coefficients we are trying to learn: βj ∼ N(0, σ2β), for j ∈ {1, . . . , p}. We assume that the ob-
servations yi are sampled adding Gaussian noise with variance σ2ε to points from the underlying
linear model given by β0 + x>i β, so that yi ∼ N(β0 + x>i β, σ

2
ε ), for i ∈ {1, . . . , n}. Find the

maximum-a-posteriori (which is also the posterior mean) for the vector of coefficients β. Show the
equivalence between this estimator and the estimator obtained when performing L2-regularized
(ridge) regression, and interpret the relationship between the regularization parameter λ and the
parameters σ2β and σ2ε . [Hint: marginal and conditional distributions of multivariate Gaussians
have standard expressions].
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