Plug-in Classification

- Consider the 0-1 loss and the risk:

\[
\mathbb{E}\left[L(Y, f(X)) \mid X = x \right] = \sum_{k=1}^{K} L(k, f(x)) \mathbb{P}(Y = k \mid X = x)
\]

The Bayes classifier provides a solution that minimizes the risk:

\[
f_{\text{Bayes}}(x) = \arg \max_{k=1,\ldots,K} \pi_k g_k(x).
\]

- We know neither the conditional density \(g_k \) nor the class probability \(\pi_k \)!
- The **plug-in classifier** chooses the class

\[
f(x) = \arg \max_{k=1,\ldots,K} \hat{\pi}_k \hat{g}_k(x),
\]

where we plugged in

- estimates \(\hat{\pi}_k \) of \(\pi_k \) and \(k = 1, \ldots, K \) and
- estimates \(\hat{g}_k(x) \) of conditional densities,

Linear Discriminant Analysis is an example of plug-in classification.
Summary: **Linear Discriminant Analysis**

- **LDA**: a plug-in classifier assuming multivariate normal conditional density $g_k(x) = g_k(x|\mu_k, \Sigma)$ for each class k sharing the same covariance Σ:

 $$X|Y = k \sim \mathcal{N}(\mu_k, \Sigma),$$

 $$g_k(x|\mu_k, \Sigma) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp \left(-\frac{1}{2} (x - \mu_k)^\top \Sigma^{-1} (x - \mu_k) \right).$$

- LDA minimizes the squared **Mahalanobis distance** between x and $\hat{\mu}_k$, offset by a term depending on the estimated class proportion $\hat{\pi}_k$:

 $$f_{\text{LDA}}(x) = \arg\max_{k \in \{1, \ldots, K\}} \log \hat{\pi}_k g_k(x|\hat{\mu}_k, \hat{\Sigma})$$

 $$= \arg\max_{k \in \{1, \ldots, K\}} \left(\log \hat{\pi}_k - \frac{1}{2} \hat{\mu}_k^\top \hat{\Sigma}^{-1} \hat{\mu}_k \right) + \left(\hat{\Sigma}^{-1} \hat{\mu}_k \right)^\top x$$

 terms depending on k linear in x

 $$= \arg\min_{k \in \{1, \ldots, K\}} \frac{1}{2} (x - \hat{\mu}_k)^\top \hat{\Sigma}^{-1} (x - \hat{\mu}_k) - \log \hat{\pi}_k.$$

 squared Mahalanobis distance
LDA projections

Figure by R. Gutierrez-Osuna
LDA vs PCA projections

LDA separates the groups better.
Fisherfaces

Eigenfaces vs. Fisherfaces, Belhumeur et al. 1997

Conditional densities with different covariances

Given training data with \(K \) classes, assume a parametric form for conditional density \(g_k(x) \), where for each class

\[
X | Y = k \sim \mathcal{N}(\mu_k, \Sigma_k),
\]
i.e., instead of assuming that every class has a different mean \(\mu_k \) with the same covariance matrix \(\Sigma \) (LDA), we now allow each class to have its own covariance matrix.

Considering \(\log \pi_k g_k(x) \) as before,

\[
\log \pi_k g_k(x) = \text{const} + \log(\pi_k) - \frac{1}{2} \left(\log |\Sigma_k| + (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \right)
\]

\[
= \text{const} + \log(\pi_k) - \frac{1}{2} \left(\log |\Sigma_k| + \mu_k^T \Sigma_k^{-1} \mu_k \right) + \mu_k^T \Sigma_k^{-1} x - \frac{1}{2} x^T \Sigma_k^{-1} x
\]

\[
= a_k + b_k^T x + x^T c_k x.
\]

A quadratic discriminant function instead of linear.
Quadratic decision boundaries

Again, by considering that we choose class k over k',

$$a_k + b_k^T x + x^T c_k x - (a_{k'} + b_{k'}^T x + x^T c_{k'} x)$$

$$= a_\star + b_\star^T x + x^T c_\star x > 0$$

we see that the decision boundaries of the Bayes Classifier are quadratic surfaces.

- The plug-in Bayes Classifier under these assumptions is known as the **Quadratic Discriminant Analysis** (QDA) Classifier.
QDA

LDA classifier:

\[
 f_{\text{LDA}}(x) = \arg\min_{k \in \{1, \ldots, K\}} \left\{ (x - \hat{\mu}_k)^T \hat{\Sigma}_k^{-1} (x - \hat{\mu}_k) - 2 \log(\hat{\pi}_k) \right\}
\]

QDA classifier:

\[
 f_{\text{QDA}}(x) = \arg\min_{k \in \{1, \ldots, K\}} \left\{ (x - \hat{\mu}_k)^T \hat{\Sigma}_k^{-1} (x - \hat{\mu}_k) - 2 \log(\hat{\pi}_k) + \log(|\hat{\Sigma}_k|) \right\}
\]

for each point \(x \in \mathcal{X} \) where the plug-in estimate \(\hat{\mu}_k \) is as before and \(\hat{\Sigma}_k \) is (in contrast to LDA) estimated for each class \(k = 1, \ldots, K \) separately:

\[
 \hat{\Sigma}_k = \frac{1}{n_k} \sum_{j: y_j = k} (x_j - \hat{\mu}_k)(x_j - \hat{\mu}_k)^T.
\]
Computing and plotting the QDA boundaries.

```r
## fit QDA
iris.qda <- qda(x=iris.data, grouping=ct)

## create a grid for our plotting surface
x <- seq(-6, 6, 0.02)
y <- seq(-4, 4, 0.02)
z <- as.matrix(expand.grid(x, y), 0)
m <- length(x)
n <- length(y)

iris.qdp <- predict(iris.qda, z)$class
contour(x, y, matrix(iris.qdp, m, n),
        levels = c(1.5, 2.5), add = TRUE, d = FALSE, lty = 2)
```
Iris example: QDA boundaries
Iris example: QDA boundaries
LDA or QDA?

- Having seen both LDA and QDA in action, it is natural to ask which is the “better” classifier.
- If the covariances of different classes are very distinct, QDA will probably have an advantage over LDA.
- Parametric models are only ever approximations to the real world, allowing more flexible decision boundaries (QDA) may seem like a good idea. However, there is a price to pay in terms of increased variance and potential overfitting.
Regularized Discriminant Analysis

In the case where data is scarce, to fit

- LDA, need to estimate $K \times p + p \times p$ parameters
- QDA, need to estimate $K \times p + K \times p \times p$ parameters.

Using LDA allows us to better estimate the covariance matrix Σ. Though QDA allows more flexible decision boundaries, the estimates of the K covariance matrices Σ_k are more variable.

RDA combines the strengths of both classifiers by regularizing each covariance matrix Σ_k in QDA to the single one Σ in LDA

$$
\Sigma_k(\alpha) = \alpha \Sigma_k + (1 - \alpha) \Sigma \quad \text{for some } \alpha \in [0, 1].
$$

This introduces a new parameter α and allows for a continuum of models between LDA and QDA to be used. Can be selected by Cross-Validation for example.
Logistic regression
In LDA and QDA, we estimate $p(x|y)$, but for classification we are mainly interested in $p(y|x)$.

Why not estimate that directly? Logistic regression\(^1\) is a popular way of doing this.

\(^1\)Despite the name “regression”, we are using it for classification!
Logistic regression

- One of the most popular methods for classification
- Linear model on the probabilities
- Dates back to work on population growth curves by Verhulst [1838, 1845, 1847]
- Statistical use for classification dates to Cox [1960s]
- Independently discovered as the perceptron in machine learning [Rosenblatt 1957]
- Main example of “discriminative” as opposed to “generative” learning
- Naïve approach to classification: we could do linear regression assigning specific values to each class. Logistic regression refines this idea and provides a more suitable model.
Logistic regression

- Statistical perspective: consider $\mathcal{Y} = \{0, 1\}$. Generalised linear model with Bernoulli likelihood and logit link:

$$Y | X = x, a, b \sim \text{Bernoulli}\left(s(a + b^\top x)\right)$$

$$s(a + b^\top x) = \frac{1}{1 + \exp(- (a + b^\top x))}.$$

- ML perspective: a discriminative classifier. Consider binary classification with $\mathcal{Y} = \{+1, -1\}$. Logistic regression uses a parametric model on the conditional $Y | X$, not the joint distribution of (X, Y):

$$p(Y = y | X = x; a, b) = \frac{1}{1 + \exp(-y(a + b^\top x))}.$$
Prediction Using Logistic Regression
Consider using LDA for binary classification with $\mathcal{Y} = \{+1, -1\}$. Predictions are based on linear decision boundary:

$$\hat{y}_{LDA}(x) = \text{sign}\left\{ \log \hat{\pi}_{+1}g_{+1}(x|\hat{\mu}_{+1}, \hat{\Sigma}) - \log \hat{\pi}_{-1}g_{-1}(x|\hat{\mu}_{-1}, \hat{\Sigma}) \right\}$$

$$= \text{sign}\left\{ a + b^\top x \right\}$$

for a and b depending on fitted parameters $\hat{\theta} = (\hat{\pi}_{+1}, \hat{\pi}_{-1}, \hat{\mu}_{+1}, \hat{\mu}_{-1}, \Sigma)$.

Quantity $a + b^\top x$ can be viewed as a soft classification rule. Indeed, it is modelling the difference between the log-discriminant functions, or equivalently, the log-odds ratio:

$$a + b^\top x = \log \frac{p(Y = +1|X = x; \hat{\theta})}{p(Y = -1|X = x; \hat{\theta})}.$$

$f(x) = a + b^\top x$ corresponds to the “confidence of predictions” and loss can be measured as a function of this confidence:

- exponential loss: $L(y, f(x)) = e^{-yf(x)}$,
- log-loss: $L(y, f(x)) = \log(1 + e^{-yf(x)})$,
- hinge loss: $L(y, f(x)) = \max\{1 - yf(x), 0\}$.

Linearity of log-odds and logistic function

- $a + b^\top x$ models the **log-odds ratio**:

$$\log \frac{p(Y = +1|X = x; a, b)}{p(Y = -1|X = x; a, b)} = a + b^\top x.$$

- Solve explicitly for conditional class probabilities (using $p(Y = +1|X = x; a, b) + p(Y = -1|X = x; a, b) = 1$):

$$p(Y = +1|X = x; a, b) = \frac{1}{1 + \exp(-(a + b^\top x))} =: s(a + b^\top x)$$

$$p(Y = -1|X = x; a, b) = \frac{1}{1 + \exp((a + b^\top x))} = s(-a - b^\top x)$$

where $s(z) = 1/(1 + \exp(-z))$ is the **logistic function**.
Fitting the parameters of the hyperplane

How to learn a and b given a training data set $(x_i, y_i)_{i=1}^n$?

- Consider maximizing the **conditional log likelihood** for $Y = \{+1, -1\}$:

$$p(Y = y_i | X = x_i; a, b) = p(y_i | x_i) = \begin{cases} s(a + b^\top x_i) & \text{if } Y = +1 \\ 1 - s(a + b^\top x_i) & \text{if } Y = -1 \end{cases}$$

- Noting that $1 - s(z) = s(-z)$, we can write the log-likelihood using the compact expression:

$$\log p(y_i | x_i) = \log s(y_i(a + b^\top x_i)).$$

- And the log-likelihood over the whole i.i.d. data set is:

$$\ell(a, b) = \sum_{i=1}^n \log p(y_i | x_i) = \sum_{i=1}^n \log s(y_i(a + b^\top x_i)).$$
Fitting the parameters of the hyperplane

How to learn \(a \) and \(b \) given a training data set \((x_i, y_i)_{i=1}^n\) ?

- Consider maximizing the **conditional log likelihood**:

 \[
 \ell(a, b) = \sum_{i=1}^{n} \log p(y_i | x_i) = \sum_{i=1}^{n} \log s(y_i(a + b^T x_i)).
 \]

- Equivalent to minimizing the empirical risk associated with the **log loss**:

 \[
 \hat{R}_{\log}(f_{a,b}) = \frac{1}{n} \sum_{i=1}^{n} - \log s(y_i(a + b^T x_i)) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i(a + b^T x_i))).
 \]
Could we use the 0-1 loss?

- With the 0-1 loss, the risk becomes:

\[
\hat{R}(f_{a,b}) = \frac{1}{n} \sum_{i=1}^{n} \text{step}(-y_i(a + b^\top x_i))
\]

- But what is the gradient? ...