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Plug-in Classification

@ Consider the 0-1 loss and the risk:
K
[ (v, F(X))|X = x} 3" Lk, f(@)P(Y = kX = 2)
k=1

The Bayes classifier provides a solution that minimizes the risk:

fBayes(fL') = arginax 7Tkgk( )
k= K

=1,..,

@ We know neither the conditional density g, nor the class probability 7!
@ The plug-in classifier chooses the class

f(z) = arg max 7 gi (),
k=1,...,.K

)

@ where we plugged in
o estimates 7, of 7, and k =1,..., K and
e estimates g, () of conditional densities,

@ Linear Discriminant Analysis is an example of plug-in classification.



Summary: Linear Discriminant Analysis

@ LDA: a plug-in classifier assuming multivariate normal conditional density
gr(x) = gr(x|uk, X) for each class k sharing the same covariance X:

X|Y =k ~N (i, 5,

1
on(aln, ) =m) S 2 exp (o - ) TS e - ).

@ LDA minimizes the squared Mahalanobis distance between x and jiy,
offset by a term depending on the estimated class proportion 7y:

fioa(z) =

argmax log 7ygu(xlir, £)
ke{l,...,K}

1 . T
argmax <log T — ﬂZZ_lﬁk) + (Z_lﬁk) T
kell,.. . K} 2

terms depending on k linear in x

1 TS ~ ~
argmin = (z — ) ' 2Nz — fix) — log 7.
ke{l,., K} 2

squared Mahalanobis distance



Discriminant analysis

LDA projections
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Figure by R. Gutierrez-Osuna



Dis

LDA vs PCA projections

analysis

LDA separates the groups better.
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Fisherfaces

Eigenfaces vs. Fisherfaces, Belhumeur et al. 1997

6 http://ieeexplore.ieee.org/document/598228/
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'Quadratic Discriminant Analysis
Conditional densities with different covariances

Given training data with K classes, assume a parametric form for conditional
density gx(x), where for each class

le =k ~ N(:u’kazk)a

i.e., instead of assuming that every class has a different mean u;, with the
same covariance matrix X (LDA), we now allow each class to have its own
covariance matrix.

Considering log g (z) as before,

logmyge(z) = const+ log(my) — % (log [Sk| + (& — ) "S5 (@ — )
= const + log(my) — % (log |Zk| + pi 25 )
—l—ukT.E,:lx — %xTE,;lx
= ar+ bga: + 2l ep.

A quadratic discriminant function instead of linear.
7



'Quadratic Discriminant Analysis
Quadratic decision boundaries

Again, by considering that we choose class k over &/,

ar + bz + aTcpr — (ap + Lz + 2T e )
=a, + bf:lc +aTe,x >0

we see that the decision boundaries of the Bayes Classifier are quadratic
surfaces.

@ The plug-in Bayes Classifer under these assumptions is known as the
Quadratic Discriminant Analysis (QDA) Classifier.



LDA classifier:

ke{1,..., K}

fion(@) = argmin {(z - 71)7S (0 — ) — 2log(71) )

QDA classifier:

~

faoa(w) = argmin {(z = i) 'S @ — i) — 2log(Fe) + log(|Z]) }
ke{1,...,K}

for each point x € X where the plug-in estimate ji;. is as before and S, is (in
contrast to LDA) estimated for each class k = 1,..., K separately:

> (= i) — )"

Jiyj=k



Discriminant analysis \Quadralic Discriminant Analysis\

Computing and plotting the QDA boundaries.

##fit QDA
iris.gda <- gda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)
<- seq(-4,4,0.02)
as.matrix (expand.grid(x,y),0)
<- length (x)
<- length (y)

508 NN
A
[

iris.qgdp <- predict (iris.qgda, z)$class
contour (x,y,matrix(iris.qgdp,m,n),
levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



\Quadralic Discriminant Analysis\
Iris example: QDA boundaries
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\Quadralic Discriminant Analysis\
Iris example: QDA boundaries
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@ Having seen both LDA and QDA in action, it is natural to ask which is the
“better” classifier.

@ If the covariances of different classes are very distinct, QDA will probably
have an advantage over LDA.

@ Parametric models are only ever approximations to the real world,
allowing more flexible decision boundaries (QDA) may seem like a
good idea. However, there is a price to pay in terms of increased
variance and potential overfitting.



'Quadratic Discriminant Analysis
Regularized Discriminant Analysis

In the case where data is scarce, to fit
@ LDA, need to estimate K x p 4+ p x p parameters
@ QDA, need to estimate K x p + K X p X p parameters.

Using LDA allows us to better estimate the covariance matrix ¥. Though QDA
allows more flexible decision boundaries, the estimates of the K covariance
matrices X, are more variable.

RDA combines the strengths of both classifiers by regularizing each
covariance matrix X in QDA to the single one X in LDA

Yp(a)=aXp +(1—a)X  forsome « € [0,1].
This introduces a new parameter « and allows for a continuum of models

between LDA and QDA to be used. Can be selected by Cross-Validation for
example.



Logistic regression




Review

@ In LDA and QDA, we estimate p(z|y), but for classification we are mainly
interested in p(y|x)

@ Why not estimate that directly? Logistic regression’ is a popular way of
doing this.

"Despite the name “regression”, we are using it for classification!
15



Logistic regression

@ One of the most popular methods for classification
@ Linear model on the probabilities

@ Dates back to work on population growth curves by Verhulst [1838, 1845,
1847]

@ Statistical use for classification dates to Cox [1960s]

@ Independently discovered as the perceptron in machine learning
[Rosenblatt 1957]

@ Main example of “discriminative” as opposed to “generative” learning

@ Naive approach to classification: we could do linear regression assigning
specific values to each class. Logistic regression refines this idea and
provides a more suitable model.



Logistic regression

@ Statistical perspective: consider ) = {0, 1}. Generalised linear model
with Bernoulli likelihood and logit link:

Y|X =x,a,b~ Bernoulli (s(a+ b))

TN 1
s(la+b'z)= e e pER ATV

0 . . .
-8 -6 -4 -2 0 2 4 6 8

@ ML perspective: a discriminative classifier. Consider binary
classification with )y = {+1, —1}. Logistic regression uses a parametric
model on the conditional Y'|.X, not the joint distribution of (X,Y):

1
T+ exp(—y(a+bTx))°

p(Y =y|X =2;0,0) =



Logistic regression

Prediction Using Logistic Regression




Hard vs Soft classification rules

@ Consider using LDA for binary classification with ) = {41, —1}.
Predictions are based on linear decision boundary:

~ ~

yoa(z) = sign {IOg%+1g+1($‘ﬁ+lvz) —logm_1g-1(x|fi-1, Z)}
= sign {a + bTx}

for a and b depending on fitted parameters 6= (T, T, g1, —1, ).

@ Quantity a + b = can be viewed as a soft classification rule. Indeed, it is
modelling the difference between the log-discriminant functions, or
equivalently, the log-odds ratio:

Y: = 'A
a+b'z=1log il HIX =25 g)
p(Y = —1X = 2;0)

@ f(z) =a+b'x corresponds to the “confidence of predictions” and loss
can be measured as a function of this confidence:
e exponential loss: L(y, f(z)) = e %),
o log-loss: L(y, f(z)) = log(1 + e~ ¥ (®)),
@ hinge loss: L(y, f(z)) = max{l — yf(z),0}.



Logistic regression

Linearity of log-odds and logistic function

@ a + b2z models the log-odds ratio:

p(Y =+1|X = x;a,b) T
= b x.

p(Y = —-1|X = z;a,b) arbw

log

@ Solve explicitly for conditional class probabilities (using
p(Y =+11X =z;a,0) + p(Y = —=1|X = z;a,b) = 1):

1
YV =+1|X = z;a,b) = = b’
p( i % a,0) 1+exp(—(a+bTx)) sla+b a)
1
=s(—a—b'x)

Y =—-1|X = ux; =
p( ‘ x,a,b) 1+exp(+(a+bT:c))
where s(z) = 1/(1 + exp(—=z)) is the logistic function.

.
L/
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Fitting the parameters of the hyperplane

How to learn a and b given a training data set (z;, y;)I,?
@ Consider maximizing the conditional log likelihood for Y = {+1, —1}:

s(a+bTa; if V=41
p(Y:y”X:‘”““’b):p(y”xi):{ 1(— s(a+b)T:ci) if v =-—1

@ Noting that 1 — s(z) = s(—z), we can write the log-likelihood using the
compact expression:

log p(y:|xi) = log s(yi(a + b))

@ And the log-likelihood over the whole i.i.d. data set is:

t(a,b) = Z logp(yilz:) = > logs(yi(a+ b ;).

i=1

21



Fitting the parameters of the hyperplane

How to learn « and b given a training data set (z;, y;),?
@ Consider maximizing the conditional log likelihood:

l(a,b) = Z log p(yi|x;) = Z log s(yi(a + b z;)).
i=1 i=1
@ Equivalent to minimizing the empirical risk associated with the log loss:
~ 1< 1<
Riog(fap) = > ~logs(yi(a+bT ;) = — 3 log(1+exp(—yi(a+b ,)))

; n <
i=1 =1

— Zero-one loss
— Hinge loss
— Logistic loss

Lly;, £(x;))

! 1
v flx;)
290



Could we use the 0-1 loss?

@ With the 0-1 loss, the risk becomes:

Rlfun) = 13 step(—pi(a +172,)

i=1

@ But what is the gradient? ...

21
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