
Statistical Machine Learning
Hilary Term 2020

Tom Rainforth
Department of Statistics

University of Oxford

Slide credits and other course material can be found at:
http://www.stats.ox.ac.uk/~palamara/SML20.html

March 10, 2020

1

http://www.stats.ox.ac.uk/~palamara/SML20.html

Recap: Decision TreesDecision Trees — Prediction

5

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x1

x2

t

t t

t

f

ff

f

2

Recap: Decision TreesDecision Trees — Prediction

6

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x1

x2

t

t t

t

f

ff

f

2

Recap: Decision TreesDecision Trees — Prediction

7

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x1

x2

t

t t

t

f

ff

f

2

Recap: Decision TreesDecision Trees — Prediction

8

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x1

x2

t

t t

t

f

ff

f

2

Recap: Decision TreesDecision Trees — Prediction

9

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x2

x1

t

t t

t

f

ff

f

2

Recap: Decision TreesDecision Trees — Prediction

10

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x2

x1

t

t t

t

f

ff

f

2

Recap: Decision TreesDecision Trees — Prediction

11

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x1

x2

t

t t

t

f

ff

f

2

Recap: Regularization for Decision Trees

Trees can overfit if they are too large
so we usually look to regularize or
prune them

Pruning
❖ Collapsing down some

nodes to a single leaf
node

❖ Start at the leaves and
step upwards deciding
whether to collapse
based on some metric

❖ Smaller tree that is less
prone to overfitting

❖ Computational
expensive and unreliable

61

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

3

Ensembles: Bootstrapping, Bagging, and Random Forests

Ensembles: Bootstrapping, Bagging,
and Random Forests

4

Ensembles: Bootstrapping, Bagging, and Random Forests Ensembles

Individual Trees are Not Good Predictive Models
Individual Trees are Not Good Predictive Models

37

-2 0 2 4 6

-2

-1

0

1

2

5

Ensembles: Bootstrapping, Bagging, and Random Forests Ensembles

Learn Multiple Trees and Average Their Predictions
InsteadEnsembles: Learn Multiple Trees Instead!

38

[Adapted from: Criminisi, Antonio, Jamie Shotton, and Ender Konukoglu. "Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and semi-supervised

learning." Foundations and Trends® in Computer Graphics and Vision 7.2–3 (2012): 81-227.]

24 Classification forests

Fig. 3.2: Classification forest testing. During testing the same un-

labelled test input data v is pushed through each component tree. At

each internal node a test is applied and the data point sent to the ap-

propriate child. The process is repeated until a leaf is reached. At the

leaf the stored posterior pt(c|v) is read o↵. The forest class posterior

p(c|v) is simply the average of all tree posteriors.

sample ⇢ = 1000 parameter values out of possibly billions or even infi-

nite possibilities. It is important to point out that it is not necessary to

have the entire set T pre-computed and stored. We can generate each

random subset Tj as needed before starting training the corresponding

node.

The leaf and ensemble prediction models. Classification forests

produce probabilistic output as they return not just a single class point

prediction but an entire class distribution. In fact, during testing, each

tree leaf yields the posterior pt(c|v) and the forest output is simply:

p(c|v) =
1

T

TX

t

pt(c|v).

This is illustrated with a small, three-tree forest in fig. 3.2.

The choices made above in terms of the form of the objective func-

tion and that of the prediction model characterize a classification forest.

In later chapter we will discuss how di↵erent choices lead to di↵erent

p(Y |X) =
1

L

LX

t

pt(Y |X)p(Y |X) =
1

L

LX

t

pt(Y |X)p(Y |X) =
1

L

LX

t

pt(Y |X)

p(Y |X) =
1

L

LX

t

pt(Y |X)

6

Ensembles: Bootstrapping, Bagging, and Random Forests Ensembles

Different Trees will Make Different Errors: Averaging
Can Cancel Errors Out

-2 0 2 4 6

-2

-1

0

1

2

-2 0 2 4 6

-2

-1

0

1

2

-2 0 2 4 6

-2

-1

0

1

2

-2 0 2 4 6

-2

-1

0

1

2

Different trees
will make
different
mistakes that
will get
averaged out

7

Ensembles: Bootstrapping, Bagging, and Random Forests Ensembles

Decision Ensembles are More Powerful Models

Decision ensembles (also known
as forests) are fundamentally
more powerful models than
individual trees

They can have more complex
decision boundaries
They reduce the variation on
predictions: we can average
away the errors as not all trees
will make the same “mistakes”
They are less prone to
overfitting
No need to prune

40

❖ Fundamentally more
powerful models — can
have more complex
decision boundaries

❖ Reduces the variance on
predictions: average
away the errors as not
all trees will make the
same “mistakes”

❖ Less prone to overfitting

Decision Tree Ensembles

Figure: Decision surface
for a random forest

8

Ensembles: Bootstrapping, Bagging, and Random Forests Motivation

Forests have a huge number of applicationsRandom Forests have a Multitude of Applications

[Image Credits: Bosch et al and Gram-Hansen et al]

ba
se
ba
ll-
ba
t

ba
sk
et
ba
ll-
ho
op

do
g

Ka
ya
c

tra
ffi
c
lig
ht

Figure 3. Some images from the Caltech-256 dataset.

no optimization. s = 1 s = 2 s = 3 s = 4
38.7 42.5 42.9 43.5 42.8
±1.3 ±1.0 ±1.0 ±1.1 ±1.0

Table 1. Caltech-256 performance when using 100 randomized
trees with D=20, entropy optimization and all descriptors. The
first column is without ROI optimization and the rest are for ROI
optimization from s = 1 to 4 images. The standard deviation is
given below each row.

5. Implementation
Appearance. For the appearance representation both grey
level and colour cues are used (termed AppGray and
AppColour respectively). SIFT descriptors are computed
at points on a regular grid with spacing M pixels, here
M = 10. At each grid point the descriptors are computed
over circular support patches with radii r = 4, 8, 12 and 16
pixels. The patches with radii 4 do not overlap and the other
radii do. For AppColour the SIFT descriptors are computed
for each HSV component. This gives a 128 £ 3 D-SIFT
descriptor for each point. In the case of AppGray , SIFT
descriptors are computed over the gray image (with inten-
sity I = 0.3R + 0.59G + 0.11B) and the resulting SIFT
descriptor is a 128 vector. Note that the descriptors are ro-
tation invariant. The K-means clustering is performed over
5 training images per category selected at random. A vo-
cabulary of V = 300 words is used here.
Shape. Edge contours are extracted using the Canny edge
detector. The orientation gradients are then computed us-
ing a 3£ 3 Sobel mask without Gaussian smoothing. It has
been shown previously [9] that smoothing the image signif-
icantly decreases classification performance. In the experi-
ments two shape descriptors are used: one with orientations
in the range [0, 180] (where the contrast sign of the gradient
is ignored) and the other with range [0, 360] using all ori-
entation as in the original SIFT descriptor [19]. We refer
to these as Shape180 and Shape360 respectively. The his-

togram descriptor is discretized into K = 20 and K = 40
bins for for Shape180 and Shape360 respectively.
ROI detection. The optimization process is done by test-
ing the similarity between a number of images s ranging
from 1 to 4. The search is over the four parameters spec-
ifying the coordinates of the rectangle: xmin, xmax, ymin

and ymax. The search is carried out over a translation grid
with 10 pixel steps. The optimization is initialized with the
ROI corresponding to the entire image, and then scaling the
four parameters in steps of 0.1. The new ROI obtained af-
ter the scaling process is translated over the whole image
and then scaled again. At each iteration we optimize the
cost function (2) for each training image. The optimization
terminates when there are no more changes in the ROIs or
when the number of iteration reaches 10. For the descriptor
we use the PHOG and PHOW vectors concatenated.
Randomized trees and ferns. At a given node, nf features
are randomly selected (the number used is discussed in sec-
tion 6). The vector n is initialized with zeros and the nf

variables chosen are coefficients that are uniform random
numbers on [°1, 1]. b is randomly chosen between 0 and
the distance of the further point x from the origin. We then
recursively build the trees by trying r different tests at each
node and keeping the best one according to the entropy cri-
terion of (3). As in [17], for the root node we chose r = 10,
a very small number, to reduce the correlation between the
resulting trees. For all other nodes, we used r = 100D,
where D is the depth of the node. When choosing a binary
test randomness is injected into the training set per tree: one
third of the training images per category are randomly se-
lected and used to determine the node tests by the entropy
criterion, and the remaining training images are used to es-
timate the posterior probabilities in the terminal nodes. This
heuristic involves randomizing over both tests and training
data. When using the simpler approach (i.e. without using
the criterion (3)), trees are grown by randomly selecting n
and b without measuring the gain of each test, and all the
training images are used to estimate the posterior probabil-
ities. For the two methods, trees are grown until a maximal
depth is reached or until less than 10 instances fall in the
node. We test trees for D = 10, 15 and 20. To grow the ferns
r = 10 is used for each binary test.

6. Image Classification Results
We first study the influence of different parameters using

Caltech-256 as our test set. Then, in section 6.1 we com-
pare the random forests with a multi-way SVM classifier
for Caltech-101 and in section 6.2 we provide a comparison
with the state-of-art. For the experiments the following pa-
rameters are used unless stated otherwise: 100 randomized
trees with D=20, entropy optimization, and all the descrip-
tors. Parameter optimization is carried out on a validation
set (a sub-set of the training set, disjoint from the test set).

Image Classification
Motion Detection

Figure 4: An example of annotated ground truth map. Le�:
The city is Mumbai, the white dots represent informal settle-
ments and the black dots represent the environment. Right:
The Sentinel-2 image of Mumbai.

3 RELATED WORK
Recent publications applying machine learning to remote sensing
data, in particular to satellite imagery, that have focused on de-
tecting, or mapping informal settlements [1, 16–19, 26, 29] have
typically been trained on a speci�c region, or feature in combina-
tion with VHR [12, 17, 23, 23]. The approaches most in spirit to
our own are [15, 26, 29]. Varshney et al. focus on detecting roofs in
Eastern Africa using a template matching algorithm and random
forest, they take advantage of Google Earths’ API to extract high
resolution imagery, which although is free to researchers, is not
openly available to everyone. Xie et al. and Jean et al. use a mixture
of data sources and transfer learning across di�erent data sets to
generate poverty maps by taking advantage of night time imagery
through the National Oceanic and Atmospheric Administration
(NOAA) and daytime imagery through Google Earths’ API. How-
ever, to our knowledge there exists no previous work on predicting
informal settlements solely from LR data, or predicting informal
settlements in the way that we present here. This inhibits our ability
to benchmark against previous methods. Thus, by providing the
data sets and the baselines in this paper, we provide a robust way
to compare the e�ectiveness of any future approaches and facilitate
the creation of new machine learning methodologies.

4 METHODS
In this section, we describe our approaches for detecting and map-
ping informal settlements. We introduce two di�erent methods;
a cost-e�cient method and cost-prohibitive method. Our �rst
method trains a classi�er to learn what the spectrum of an in-
formal settlement is, using LR freely available Sentinel-2 data. To
do this, we employ a pixel-wise classi�cation, where the system
learns whether or not a 10-band spectra is associated to an informal
settlement or the environment, which encompasses everything that

is not an informal settlement. Our second method, is a semantic
segmentation deep neural network that uses VHR satellite imagery,
which is useful when informal settlements do not have unique spec-
tra when compared to the environment, like those in Sudan, see
Figure 5.

4.1 Cost E�ective Method
Canonical Correlation Forests (CCFs) [21] are a decision tree
ensemble method for classi�cation and regression. CCFs are the
state-of-the-art random forest technique, which have shown to
achieve remarkable results for numerous regression and classi�-
cation tasks [21]. Individual canonical correlation trees are binary
decision trees with hyper-plane splits based on local canonical cor-
relation coe�cients calculated during training. Like most random
forest based approaches, CCFs have very few hyper-parameters
to tune and typically provide very good performance out of the
box. All that has to be set is the number of trees, ntr ees . For CCFs,
setting ntr ees = 15 provides a performance that is empirically
equivalent to a random forest that has ntr ees = 500 [21], meaning
CCFs have lower computational costs, whilst providing better clas-
si�cation. CCFs work by using canonical correlation analysis (CCA)
and projection bootstrapping during the training of each tree, which
projects the data into a space that maximally correlates the inputs
with the outputs. This is particularly useful when we have small
data-sets, like in our case, as it reduces the amount of arti�cial ran-
domness required to be added during the tree training procedure
and improves the ensemble predictive performance [21].

The computational e�ciency aspects of CCFs and their suitabil-
ity to both small and large data-sets, makes them ideal for detecting
informal settlements for three reasons. First, many of the organisa-
tions that we aim to help will not have access to a large amount of
compute resources, therefore computational e�ciency is important.
Second, to run the CCFs for both training and prediction, all that
has to be called is one function. This ensures that the end user
does not need to be an expert in ensemble methods and makes the
method akin to plug and play. Finally, some of our ground truth
data sets are relatively small, which means that we must use the
data as e�ciently as possible, which CCFs allow us to do. When
VHR and computational cost are not a restriction we can employ a
deep learning approach using convolution neural networks (CNN)
to detect informal settlements.

4.2 Cost Prohibitive Method
Since informal settlements can also be classi�ed by the rooftop size
and the surrounding building density, we employ a state-of-the-art
semantic segmentation neural network on optical (RGB) VHR satel-
lite imagery to detect these contextual features. These contextual
features are important when it is not possible to distinguish infor-
mal settlements from the environment by spectral signal in the
same region. An example of such an informal settlement is shown
in Figure 5. We see that the informal settlements in a rural region
of Al Geneina, Sudan have a very low building density, and also
the roof tops of both formal and informal settlements are built out
of concrete, meaning they have the same spectral signal. This is in
contrast to the dense slums in Nairobi and Mumbai.

Processing Satellite
Images

9

Ensembles: Bootstrapping, Bagging, and Random Forests Motivation

Microsoft Kinect Pose Recognition

https://youtu.be/lntbRsi8lU8?t=41
https://www.microsoft.com/en-us/research/wp-content/

uploads/2016/02/BodyPartRecognition.pdf

10

https://youtu.be/lntbRsi8lU8?t=41
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BodyPartRecognition.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BodyPartRecognition.pdf

Ensembles: Bootstrapping, Bagging, and Random Forests Motivation

Forests are extremely easy to use

Random Forests are Very Easy to Use

❖ Applicable to wide range of problems and data types

10

Number of trees (bigger the better)

Applicable to wide range of problems and data types
Extremely fast

11

Ensembles: Bootstrapping, Bagging, and Random Forests Motivation

Average
Rank

Average
Error (%)

Random forests and
their extensions give
spectacular out-of-the
box performance: 7 out
of the top 20 classifiers
from a survey of 180
classifiers on 82 datasets
are based on them

CANONICAL CORRELATION FORESTS

Table 2: Number of victories column vs row at 1% significance level of Wilcoxon signed rank test

CCF RF Rotation Forest CCF-Bag

CCF - 2 7 3
RF 28 - 28 28
Rotation Forest 14 2 - 12
CCF-Bag 18 2 10 -

Table 3: Comparison of top 20 performing classifiers on 82 UCI datasets. R is the mean rank
over all 180 classifiers according to error rate; E is the mean error rate (%); is the mean Cohen’s
 (Carletta, 1996); ECCF and CCF are the respective values for CCFs on the datasets where the
competing classifier successfully ran (note CCFs successfully ran on all datasets); Nv and Nl are
the number of datasets where the CCFs was higher and lower than the classifier respectively; and p
is the p-value for whether the CCFs mean is higher using a Wilcoxon signed ranks test. Classifier
types: SVM = support vector machine, NNET = neural net, RF = random forest, Bag = bagging and
BST = boosting. For details on classifiers see (Fernández-Delgado et al., 2014).

Classifier R E ECCF CCF Nv Nl p
CCF 28.87 14.08 - 70.67 - - - -

svmPoly (SVM) 31.53 15.73 14.27 65.10 69.61 54 25 2.3e-4
svmRadialCost (SVM) 31.84 15.33 14.27 66.55 69.61 43 36 0.11

svm C (SVM) 32 15.67 14.18 67.65 70.49 46 32 0.18
elm kernel (NNET) 32.19 15.20 14.54 69.01 69.75 42 36 0.16

parRF (RF) 33.03 15.54 14.08 67.73 70.67 52 27 0.014
svmRadial (SVM) 33.77 15.68 14.27 65.88 69.61 50 28 1.6e-3

rf caret (RF) 34.48 15.56 14.18 67.67 70.49 54 23 6.3e-4
rforest R (RF) 40.70 15.82 14.18 66.67 70.49 57 20 2e-5

TreeBagger (RF) 40.91 15.75 14.08 67.51 70.67 55 23 3.5e-5
Bag LibSVM (Bag) 42.28 16.65 14.25 58.13 70.27 70 12 3.2e-12

C50 t (BST) 42.61 16.85 14.08 66.11 70.67 57 22 4.0e-4
nnet t (NNET) 42.87 18.74 14.08 64.72 70.67 54 26 1.5e-3

avNNet t (NNET) 43.26 18.77 14.08 64.88 70.67 50 29 1.0e-3
RotationForest 44.62 16.64 14.08 65.34 70.67 64 15 7.1e-9

pcaNNet t (NNET) 45.86 19.28 14.08 63.83 70.67 54 25 1.5e-4
mlp t (NNET) 46.06 17.38 14.08 66.75 70.67 54 26 1.6e-3

LibSVM (SVM) 46.50 16.65 14.08 63.80 70.67 57 21 2.9e-6
MB LibSVM (BST) 46.90 16.82 14.25 64.47 70.27 61 17 1.8e-6

RRF t (RF) 49.56 16.71 14.18 66.30 70.49 59 20 1.1e-5

CCF-Bag highlights the improvement from the projection bootstrap, while the good performance
on a large variety of datasets demonstrates the robustness and wide ranging applicability of CCFs.

4.2 Comparison to Other Classifiers

In order to provide comparison to a wider array of classifiers, we also tested CCFs using the experi-
ments of Fernández-Delgado et al (Fernández-Delgado et al., 2014) from their recent survey of 179
classifiers applied to 121 datasets. We used the same partitions which were a mix of 4-fold cross

11

[Rainforth, Tom, and Frank Wood. "Canonical correlation forests." arXiv preprint arXiv:1507.05444 (2015).]
[Fernández-Delgado, Manuel, Eva Cernadas, Senén Barro, and Dinani Amorim. "Do we need hundreds of classifiers
to solve real world classification problems?." The Journal of Machine Learning Research 15, no. 1 (2014): 3133-3181.]

12

Ensembles: Bootstrapping, Bagging, and Random Forests Motivation

Ensembling

Ensembling is much more general than just the concept of decision tree
ensembles
We can take almost any machine learning model and convert it into an
ensemble (e.g. we might also construct an ensemble of neural networks)
General idea is always the same: train multiple instances of the model
and then combine their predictions to a single prediction (usually by
averaging)
To ensure that we do not just end up with the same predictions as a
single model, we need to introduce some form of randomness into the
training process.
To construct a good ensemble we need to ensure we get a good balance
between the diversity of the constituent models (i.e. how correlated the
errors they make are) and their individual predictive power
Ensembling almost always improves the performance compared to a
single model at the expense of increased cost

Machine learning “competitions” (e.g. Kaggle) are usually won by some sort
of ensemble method, often an ensemble of neural network

13

Ensembles: Bootstrapping, Bagging, and Random Forests Motivation

Key Questions

How should be introduce randomness into the training process?
Though this can vary depending on the base model, our focus will be on a
universally applicable method called bagging and some additional methods
that are specific to decision trees

How can we control the diversity vs predictive power trade-off?
This will effectively boil down to controlling how much randomness we instill.

14

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrapping

15

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Model Variability

To have an effective ensemble, our individual models need to make
different errors in their predictions: we need diversity
Some algorithms have instability in their training such that small
changes in data can lead to large differences in the learned model
Decision trees and neural networks are unstable algorithms, k-nearest
neighbors are stable
Bootstrapping allows us to exploit instabilities to produce a diverse set
of models by training each on a slightly different dataset

16

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrap Sampling

❖ Samples a new dataset from the old dataset by
resampling with replacement

❖ Each new sample is drawn independently from the full
old dataset

43

1
2

3
4

17

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrap Sampling

44

1
2

3

4

❖ Samples a new dataset from the old dataset by
resampling with replacement

❖ Each new sample is drawn independently from the full
old dataset

17

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrap Sampling

45

1
2

3

4

❖ Samples a new dataset from the old dataset by
resampling with replacement

❖ Each new sample is drawn independently from the full
old dataset

17

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrap Sampling

46

1
2

3

4

4

❖ Samples a new dataset from the old dataset by
resampling with replacement

❖ Each new sample is drawn independently from the full
old dataset

17

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrap Sampling

47

1
2

3
4

4

❖ Samples a new dataset from the old dataset by
resampling with replacement

❖ Each new sample is drawn independently from the full
old dataset

17

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrap Sampling

48

1
2

3

4

4

❖ Samples a new dataset from the old dataset by
resampling with replacement

❖ Each new sample is drawn independently from the full
old dataset

17

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrap Sampling

49

1
2

4

4 3

❖ Samples a new dataset from the old dataset by
resampling with replacement

❖ Each new sample is drawn independently from the full
old dataset

17

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrap Sampling

50

1
2

3

4

4 3

❖ Samples a new dataset from the old dataset by
resampling with replacement

❖ Each new sample is drawn independently from the full
old dataset

17

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrap Sampling

51

1
2

3

4

4

3

❖ Samples a new dataset from the old dataset by
resampling with replacement

❖ Each new sample is drawn independently from the full
old dataset

17

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrap Sampling

52

1
2

3

4

4

3 31

❖ Samples a new dataset from the old dataset by
resampling with replacement

❖ Each new sample is drawn independently from the full
old dataset

17

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Bootstrap for Decision Trees

The bootstrap is itself a way to assess the variance of estimators.
Fit multiple trees, each on a bootstrapped sample.

> n <- nrow(Pima.tr)
> bss <- sample(1:n, n , replace=TRUE)
> sort(bss)
[1] 2 4 4 5 6 7 9 10 11 12 12 12 12 13 13 15 15 20 ...

> tree_boot <- rpart(Pima.tr[bss,8] ~ ., data=Pima.tr[bss,-8],
control=rpart.control(xval=10)) ## 10-fold CV

|glu< 123.5

age< 28.5

glu< 94.5

npreg< 5.5

glu< 156.5

ped< 0.421No

No

No Yes

No Yes

Yes

|glu< 123.5

ped< 0.348

glu< 164.5 bmi< 28.65

No

No Yes
No Yes

18

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Example: Bootstrap for Regression Trees

Regression for Boston housing data.
Predict median house prices based only on crime rate.
Use decision stump—the simplest tree with a single split at root (note
this for the purposes of the example on not good practice in general)

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

|crime>=1.918

13.44 24.44

19

Ensembles: Bootstrapping, Bagging, and Random Forests Bootstrapping

Example: Bootstrap for Regression Trees

We are aiming to fit a predictor f̂(x) and have data {(xi, yi)}ni=1.
Assess the variance of f̂(x) by taking B = 20 bootstrap samples of the
original data, and obtaining bootstrap estimators

f̂ b(x), b = 1, . . . , B

Each tree f̂ b is fitted on the resampled data (xji
, yji

)ni=1 where each ji is
chosen randomly from {1, . . . , n} with replacement.

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

20

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Bagging

21

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

1 2

3 4

Original
DatasetCreating

Diversity:
Bagging

Train Tree 1 Train Tree 2 Train Tree L

1

3

1

3

2

4

2

2

1 2

44

…

Dataset 2Dataset 1 Dataset L

22

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Average Predictions over TreesEnsembles: Learn Multiple Trees Instead!

38

[Adapted from: Criminisi, Antonio, Jamie Shotton, and Ender Konukoglu. "Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and semi-supervised

learning." Foundations and Trends® in Computer Graphics and Vision 7.2–3 (2012): 81-227.]

24 Classification forests

Fig. 3.2: Classification forest testing. During testing the same un-

labelled test input data v is pushed through each component tree. At

each internal node a test is applied and the data point sent to the ap-

propriate child. The process is repeated until a leaf is reached. At the

leaf the stored posterior pt(c|v) is read o↵. The forest class posterior

p(c|v) is simply the average of all tree posteriors.

sample ⇢ = 1000 parameter values out of possibly billions or even infi-

nite possibilities. It is important to point out that it is not necessary to

have the entire set T pre-computed and stored. We can generate each

random subset Tj as needed before starting training the corresponding

node.

The leaf and ensemble prediction models. Classification forests

produce probabilistic output as they return not just a single class point

prediction but an entire class distribution. In fact, during testing, each

tree leaf yields the posterior pt(c|v) and the forest output is simply:

p(c|v) =
1

T

TX

t

pt(c|v).

This is illustrated with a small, three-tree forest in fig. 3.2.

The choices made above in terms of the form of the objective func-

tion and that of the prediction model characterize a classification forest.

In later chapter we will discuss how di↵erent choices lead to di↵erent

p(Y |X) =
1

L

LX

t

pt(Y |X)p(Y |X) =
1

L

LX

t

pt(Y |X)p(Y |X) =
1

L

LX

t

pt(Y |X)

p(Y |X) =
1

L

LX

t

pt(Y |X)

23

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Bagging

Bagging (Bootstrap Aggregation): average across all B predictive
models (e.g. trees) fitted on different bootstrap samples.

1 For b = 1, . . . , B:
1 Draw indices (j1, . . . , jn) from the set {1, . . . , n} with replacement.
2 Fit the model, and form predictor f̂b(x) based on bootstrap sample

(xj1 , yj1), . . . , (xjn , yjn)

2 Form bagged estimator

f̂Bag(x) = 1
B

B∑
b=1

f̂ b(x)

24

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Bagging

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40
LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

Bagging smooths out the drop in the estimate of median house prices.
In general, bagging reduces the variance of predictions

25

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Variance Reduction Through Aggregation

Consider an ideal world where we can draw a complete new dataset at
will without having to perform bootstrapping, such that we can construct
estimators f̂m each based on different independent datasets of size n
from the true joint distribution of X,Y .
The aggregated estimator would then be

f̂ag(x) = 1
B

B∑
m=1

f̂m(x)→ f̄(x) = ED[f̂(x)] as B →∞

where expectation is with respect to independent datasets of size n.
Using the standard bias-variance decomposition and the law of large
numbers, the squared-loss to the optimal classifier f∗ for input x is

ED[(f∗(x)− f̂ag(x))2] = (f∗(x)− f̄(x))2 + ED[(f̄(x)− f̂ag(x))2]

= (f∗(x)− f̄(x))2 + 1
B
ED[(f̄(x)− f̂(x))2]

→ (f∗(x)− f̄(x))2 as B →∞.

Aggregation reduces the squared loss by reducing the variance of f̂(x).
26

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Variance Reduction Through Bagging

For bagging, our setup is similar, but our estimators are now based on
the bagging estimators f̂ b trained on resampled versions of the dataset.
We thus have

f̂bag(x) = 1
B

B∑
m=1

f̂ b(x)→ f̃(x,D) , Ej1
1 ,...,j

1
n
[f̂1(x)|D] as B →∞

where the expectation is now over the resampling indices.
We thus have (not examinable):

E[(f∗(x)− f̂bag(x))2] = ED
[
E
[
(f∗(x)− f̂bag(x))2

∣∣∣D]]
=ED

[
E
[
(f∗(x)− f̃(x,D))2∣∣D]]+ ED

[
E
[
(f̃(x,D)− f̂bag(x))2

∣∣∣D]]
=ED

[
(f∗(x)− f̃(x,D))2]+ 1

B
E
[
(f̃(x,D)− f̂1(x))2

]
→ED

[
(f∗(x)− f̃(x,D))2] as B →∞.

27

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Variance Reduction Through Bagging

In general, the variance of f̃(x,D) will be less than that of f̂(x), i.e. the
base model trained on the full dataset

It is still non-zero as f̃(x, D) still varies with the dataset.

Similarly the variance of the bagging estimator f̂bag(x) is generally less
than that of f̂(X):

E
[(
f̂bag(x)− E

[
f̂bag(x)

])2
]
. E

[(
f̂(x)− E

[
f̂(x)

])2
]

This variance reduction comes at the cost of a small increase in bias, in
general: (

E
[
f̂(x)

]
− f∗(x)

)2
≤
(
E
[
f̂bag(x)

]
− f∗(x)

)2

Bagging is most useful for flexible estimators with high variance and
low bias.

28

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Variance Reduction in Bagging

Deeper trees have higher complexity and variance, but lower bias.
Compare bagging trees of depth 1 and 3.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●● ●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●● ●●

● ●

●
●

● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

log(x$crim)

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●● ●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●● ●●

● ●

●
●

● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

log(x$crim)

y

29

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Out-of-bag Test Error Estimation

How well does bagging to? Can we estimate generalization performance,
and tune hyperparameters?
Sledgehammer approach: cross-validation.

● ● ● ● ● ● ● ● ●v=4

● ● ● ● ● ● ● ● ●v=3

● ● ● ● ● ● ● ● ●v=2

● ● ● ● ● ● ● ● ●v=1

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

For each v = 1, . . . , V ,
fit f̂Bag on the training samples.
predict on validation set.

Compute the CV error by averaging the loss across all test observations.

30

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Out-of-bag Test Error Estimation

But to fit f̂Bag on the training set for each v = 1, . . . , V , we have to train
on B bootstrap samples!

● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● b=4
● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=2
● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ●● b=1

v=4

● ● ● ● ● ● ● ● ● ● ● ●●● ●● b=5
● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ●● b=4
● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● b=2
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=1

v=3

● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●●●● ●●● b=4
● ● ● ● ● ● ● ● ● ● ● ●●● ● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ●● b=2
● ● ● ● ● ● ● ● ● ● ● ●●●● ●● ● b=1

v=2

● ● ● ● ● ● ● ● ● ● ● ●●●● ● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=4
● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● b=3
● ● ● ● ● ● ● ● ● ● ● ●●● ●●● b=2
● ● ● ● ● ● ● ● ● ● ● ●● ●●● ●● b=1

v=1

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

More elegant approach: Out-of-bag test error estimation.
31

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Out-of-bag Test Error Estimation

Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.

● ● ●●●●● b=10

● ●●● ●● ● b=9

●●● ● ●● ● b=8

●● ● ●● b=7

●● ●● ●●● ● b=6

● ●●●● ●●● ● b=5

●●● ● ●● ●● ● b=4

●● ●● ●●● ● b=3

● ●● ●● ● ● ● b=2

● ● ●● ●● ●● b=1
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

f̂oob(x1) = 1
4

∑
b∈{3,4,8,10}

f̂ b(x1)
32

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Out-of-bag Test Error Estimation

Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.

● ● ●●●●● b=10

● ●●● ●● ● b=9

●●● ● ●● ● b=8

●● ● ●● b=7

●● ●● ●●● ● b=6

● ●●●● ●●● ● b=5

●●● ● ●● ●● ● b=4

●● ●● ●●● ● b=3

● ●● ●● ● ● ● b=2

● ● ●● ●● ●● b=1
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

f̂oob(x2) = 1
3

∑
b∈{2,8,10}

f̂ b(x2)
33

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Out-of-bag Test Error Estimation

For each i = 1, . . . , n, the out-of-bag sample is:

B̃i = {b : xi is not in training set} ⊆ {1, . . . , B}.

Construct the out-of-bag estimate at xi:

f̂oob(xi) = 1
|B̃i|

∑
b∈B̃i

f̂ b(ii)

Out-of-bag risk:

Roob = 1
n

n∑
i=1

L(yi, f̂oob(xi))

34

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Out-of-bag Test Error Estimation

We need |B̃i| to be reasonably large for all i = 1, . . . , n.
The probability πoob of an observation NOT being included in a bootstrap
sample (j1, . . . , jn) (and hence being ‘out-of-bag’) is:

πoob =
n∏
i=1

(
1− 1

n

)
n→∞−→ 1

e
≈ 0.367.

Hence E[|B̃i|] ≈ 0.367B
In practice, number of bootstrap samples B is typically between 100 and
1000, meaning that the number |B̃i| of out-of-bag samples will be
approximately in the range 35− 400.
The obtained test error estimate is asymptotically unbiased for large
number B of bootstrap samples and large sample size n.
For finite B it will generally overestimate the test error as it is effectively
using a smaller ensemble

35

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Example: Boston Housing Dataset

Apply out of bag test error estimation to select optimal tree depth and
assess performance of bagged trees for Boston Housing data.
Use the entire dataset with p = 13 predictor variables.

n <- nrow(BostonHousing) ## n samples
X <- BostonHousing[,-14]
Y <- BostonHousing[,14]
B <- 100
maxdepth <- 3
prediction_oob <- rep(0,length(Y)) ## vector with oob predictions
numbertrees_oob <- rep(0,length(Y)) ## number pf oob trees
for (b in 1:B) { ## loop over bootstrap samples
subsample <- sample(1:n,n,replace=TRUE) ## "in-bag" samples
outofbag <- (1:n)[-subsample] ## "out-of-bag" samples
fit tree on "in-bag" samples
treeboot <- rpart(Y ~ ., data=X, subset=subsample,
control=rpart.control(maxdepth=maxdepth,minsplit=2))
predict on oob-samples
prediction_oob[outofbag] <- prediction_oob[outofbag] +
predict(treeboot, newdata=X[outofbag,])
numbertrees_oob[outofbag] <- numbertrees_oob[outofbag] + 1
}
final oob-prediction is average across all "out-of-bag" trees
prediction_oob <- prediction_oob / numbertrees_oob

36

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Example: Boston Housing Dataset

plot(prediction_oob, Y, xlab="PREDICTED", ylab="ACTUAL")

For depth d = 1.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●● ●●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

● ●●●

● ●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

● ●

●●
●

●
●

●

●

●

●●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

20 25 30

10
20

30
40

50

PREDICTED

A
C

T
U

A
L

For depth d = 10.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●● ●●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

● ●●●

● ●
●

●
●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

● ●

●●
●

●
●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40

10
20

30
40

50

PREDICTED

A
C

T
U

A
L

37

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Example: Boston Housing Dataset

Test error / out-of-bag error as a function of tree depth d:
tree depth d 1 2 3 4 5 10 30
single tree f̂ 60.7 44.8 32.8 31.2 27.7 26.5 27.3

bagged trees f̂Bag 43.4 27.0 22.8 21.5 20.7 20.1 20.1
Without bagging, the optimal tree depth seems to be d = 10.
With bagging, we could also take the depth up to d = 30.

38

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Bagging: Summary

Bagging reduces variance and helps prevent overfitting
In general, we do not need to prune when making forests and can often get
away without including any early stopping criteria

Almost always improves performance in practice (for non–trivial data)
compared to using a single tree

Because they can have more complicated decision boundaries, bagged
trees are generally fundamentally more powerful models

However, bagged trees lose much of the interpretability of single trees
Bagging is a general strategy: decision trees are the most common base
model, but can also be applied to other things like neural networks.

39

Ensembles: Bootstrapping, Bagging, and Random Forests Bagging

Other Ensembling Approaches

For some base models, bagging is not best way of creating an ensemble
Some models already have natural instabilities that can be exploited without
needing to take subsets of the data, e.g. the instability in neural network
training with respect to the initialization of the weights and biases
In some scenarios, the gains from variance reduction are outweighed by the
losses from increased bias due to using subsets of the data

In other scenarios, bagging does not give enough diversity and we can
get further gains by introducing additional randomization into the training
process in addition to (or instead of) bagging
Another common way of introducing diversity is to randomize the way
features are accessed by the classifier, such as by manipulating the form
of the features (e.g. through using random rotations) or restricting access
to certain features during the model training (e.g. using random
subspacing)

40

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Random Forests

41

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Random Forests

In general, bagging trees creates insufficient diversity: it is usually
beneficial to further randomize the training process
Random Forests (RFs) are an extension of bagged trees that introduce
an additional randomization: random subspacing (we’ll cover this next)

Implemented in randomForest library in R

This tends to gives a better trade off between diversity and predictive
power of individual trees
RFs and their extensions remain some of the best performing models in
machine learning, particularly in the context of “out-of-the-box” use
because they typically do not require careful setting of any
hyperparameters

Breiman (2001)42

http://link.springer.com/article/10.1023/A:1010933404324

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Average
Rank

Average
Error (%)

Random forests and
their extensions give
spectacular out-of-the
box performance: 7 out
of the top 20 classifiers
from a survey of 180
classifiers on 82 datasets
are based on them

CANONICAL CORRELATION FORESTS

Table 2: Number of victories column vs row at 1% significance level of Wilcoxon signed rank test

CCF RF Rotation Forest CCF-Bag

CCF - 2 7 3
RF 28 - 28 28
Rotation Forest 14 2 - 12
CCF-Bag 18 2 10 -

Table 3: Comparison of top 20 performing classifiers on 82 UCI datasets. R is the mean rank
over all 180 classifiers according to error rate; E is the mean error rate (%); is the mean Cohen’s
 (Carletta, 1996); ECCF and CCF are the respective values for CCFs on the datasets where the
competing classifier successfully ran (note CCFs successfully ran on all datasets); Nv and Nl are
the number of datasets where the CCFs was higher and lower than the classifier respectively; and p
is the p-value for whether the CCFs mean is higher using a Wilcoxon signed ranks test. Classifier
types: SVM = support vector machine, NNET = neural net, RF = random forest, Bag = bagging and
BST = boosting. For details on classifiers see (Fernández-Delgado et al., 2014).

Classifier R E ECCF CCF Nv Nl p
CCF 28.87 14.08 - 70.67 - - - -

svmPoly (SVM) 31.53 15.73 14.27 65.10 69.61 54 25 2.3e-4
svmRadialCost (SVM) 31.84 15.33 14.27 66.55 69.61 43 36 0.11

svm C (SVM) 32 15.67 14.18 67.65 70.49 46 32 0.18
elm kernel (NNET) 32.19 15.20 14.54 69.01 69.75 42 36 0.16

parRF (RF) 33.03 15.54 14.08 67.73 70.67 52 27 0.014
svmRadial (SVM) 33.77 15.68 14.27 65.88 69.61 50 28 1.6e-3

rf caret (RF) 34.48 15.56 14.18 67.67 70.49 54 23 6.3e-4
rforest R (RF) 40.70 15.82 14.18 66.67 70.49 57 20 2e-5

TreeBagger (RF) 40.91 15.75 14.08 67.51 70.67 55 23 3.5e-5
Bag LibSVM (Bag) 42.28 16.65 14.25 58.13 70.27 70 12 3.2e-12

C50 t (BST) 42.61 16.85 14.08 66.11 70.67 57 22 4.0e-4
nnet t (NNET) 42.87 18.74 14.08 64.72 70.67 54 26 1.5e-3

avNNet t (NNET) 43.26 18.77 14.08 64.88 70.67 50 29 1.0e-3
RotationForest 44.62 16.64 14.08 65.34 70.67 64 15 7.1e-9

pcaNNet t (NNET) 45.86 19.28 14.08 63.83 70.67 54 25 1.5e-4
mlp t (NNET) 46.06 17.38 14.08 66.75 70.67 54 26 1.6e-3

LibSVM (SVM) 46.50 16.65 14.08 63.80 70.67 57 21 2.9e-6
MB LibSVM (BST) 46.90 16.82 14.25 64.47 70.27 61 17 1.8e-6

RRF t (RF) 49.56 16.71 14.18 66.30 70.49 59 20 1.1e-5

CCF-Bag highlights the improvement from the projection bootstrap, while the good performance
on a large variety of datasets demonstrates the robustness and wide ranging applicability of CCFs.

4.2 Comparison to Other Classifiers

In order to provide comparison to a wider array of classifiers, we also tested CCFs using the experi-
ments of Fernández-Delgado et al (Fernández-Delgado et al., 2014) from their recent survey of 179
classifiers applied to 121 datasets. We used the same partitions which were a mix of 4-fold cross

11

[Rainforth, Tom, and Frank Wood. "Canonical correlation forests." arXiv preprint arXiv:1507.05444 (2015).]
[Fernández-Delgado, Manuel, Eva Cernadas, Senén Barro, and Dinani Amorim. "Do we need hundreds of classifiers
to solve real world classification problems?." The Journal of Machine Learning Research 15, no. 1 (2014): 3133-3181.]

43

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Random Subspacing
❖ At each node randomly select a

random subset of features to use
for the split search

❖ The number of features selected,
mtry is a hyperparameter

❖ Typically only select a small
number of features
(e.g. mtry =log2p or mtry =p0.5)

❖ This means different trees will
split along different dimensions
at each node

❖ Difference at earlier nodes, lead
to different data partitions at
later nodes and thus further
diversity

53

-2 0 2 4

-2

-1

0

1

2

44

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Random Subspacing

54

-2 0 2 4

-2

-1

0

1

2

❖ At each node randomly select a
random subset of features to use
for the split search

❖ The number of features selected,
mtry is a hyperparameter

❖ Typically only select a small
number of features
(e.g. mtry =log2p or mtry =p0.5)

❖ This means different trees will
split along different dimensions
at each node

❖ Difference at earlier nodes, lead
to different data partitions at
later nodes and thus further
diversity

44

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

-2 0 2 4

-2

-1

0

1

2

-2 0 2 4

-2

-1

0

1

2

Random Subspacing

55

❖ At each node randomly select a
random subset of features to use
for the split search

❖ The number of features selected,
mtry is a hyperparameter

❖ Typically only select a small
number of features
(e.g. mtry =log2p or mtry =p0.5)

❖ This means different trees will
split along different dimensions
at each node

❖ Difference at earlier nodes, lead
to different data partitions at
later nodes and thus further
diversity

44

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

-2 0 2 4

-2

-1

0

1

2

-2 0 2 4

-2

-1

0

1

2

Random Subspacing

56

❖ At each node randomly select a
random subset of features to use
for the split search

❖ The number of features selected,
mtry is a hyperparameter

❖ Typically only select a small
number of features
(e.g. mtry =log2p or mtry =p0.5)

❖ This means different trees will
split along different dimensions
at each node

❖ Difference at earlier nodes, lead
to different data partitions at
later nodes and thus further
diversity

44

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

-2 0 2 4

-2

-1

0

1

2

-2 0 2 4

-2

-1

0

1

2

Random Subspacing

57

❖ At each node randomly select a
random subset of features to use
for the split search

❖ The number of features selected,
mtry is a hyperparameter

❖ Typically only select a small
number of features
(e.g. mtry =log2p or mtry =p0.5)

❖ This means different trees will
split along different dimensions
at each node

❖ Difference at earlier nodes, lead
to different data partitions at
later nodes and thus further
diversity

44

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Random Forests = Bagging +
Random Subspacing

44

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

1. Use bagging: generate a separate bootstrap dataset to train
each individual tree on

1 2

3 4

Original
Dataset

Train Tree 1 Train Tree 2 Train Tree L

1

3

1

3

2

4

2

2

1 2

44
…

Dataset 2Dataset 1 Dataset L

44

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

2. Train each tree by recursively greedily choosing the best
split (as per the split criterion) from set of randomly selected
features until a stopping criterion is reached

-2 0 2 4

-2

-1

0

1

2

InfoGain = 0.95

44

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

[Adapted from: Criminisi, Antonio, Jamie Shotton, and Ender Konukoglu. "Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and semi-supervised

learning." Foundations and Trends® in Computer Graphics and Vision 7.2–3 (2012): 81-227.]

3. Make predictions by aggregating the predictions made by
individual trees (note bootstrapping is not used for evaluation)

p(Y |X) =
1

L

LX

t

pt(Y |X)

24 Classification forests

Fig. 3.2: Classification forest testing. During testing the same un-

labelled test input data v is pushed through each component tree. At

each internal node a test is applied and the data point sent to the ap-

propriate child. The process is repeated until a leaf is reached. At the

leaf the stored posterior pt(c|v) is read o↵. The forest class posterior

p(c|v) is simply the average of all tree posteriors.

sample ⇢ = 1000 parameter values out of possibly billions or even infi-

nite possibilities. It is important to point out that it is not necessary to

have the entire set T pre-computed and stored. We can generate each

random subset Tj as needed before starting training the corresponding

node.

The leaf and ensemble prediction models. Classification forests

produce probabilistic output as they return not just a single class point

prediction but an entire class distribution. In fact, during testing, each

tree leaf yields the posterior pt(c|v) and the forest output is simply:

p(c|v) =
1

T

TX

t

pt(c|v).

This is illustrated with a small, three-tree forest in fig. 3.2.

The choices made above in terms of the form of the objective func-

tion and that of the prediction model characterize a classification forest.

In later chapter we will discuss how di↵erent choices lead to di↵erent

p(Y |X) =
1

L

LX

t

pt(Y |X)p(Y |X) =
1

L

LX

t

pt(Y |X)p(Y |X) =
1

L

LX

t

pt(Y |X)

44

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Looking at the Boston Housing data again

library(randomForest)
library(MASS)
data(Boston)

y <- Boston[,14]
x <- Boston[,1:13]

?randomForest

45

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

> rf <- randomForest(x,y)
> print(rf)
>
Call:
randomForest(x = x, y = y)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 10.26161
% Var explained: 87.84

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot(predict(rf), y)
> abline(c(0,1),col=2)

Same if treating the training data as new data

> plot(predict(rf,newdata=x), y)

46

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Out-of-bag error.

> plot(predict(rf), y)
> abline(c(0,1),col=2)

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●
●

●●
●

●●

●
●

●● ●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●● ●●●

●●
●

●
●●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●● ●

●

● ●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●
●

●

●
●

●
●

●

●
●● ●

●● ●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

10 20 30 40

10
20

30
40

50

predict(rf)

y

Training error.

> plot(predict(rf,newdata=x), y)
> abline(c(0,1),col=2)

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●
●
●●

●
●

●●●●

●

●
●
●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

● ●●●●

●●
●

●
●●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●● ●

●● ●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

10 20 30 40 50

10
20

30
40

50

predict(rf, newdata = x)

y

47

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Try mtry 2 (i.e. search over two features at each node)

> (rf <- randomForest(x,y,mtry=2))
Call:
randomForest(x = x, y = y, mtry = 2)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 2

Mean of squared residuals: 12.17176

Try mtry 4

> (rf <- randomForest(x,y,mtry=4))
Call:
randomForest(x = x, y = y, mtry = 4)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 10.01574

48

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

And mtry 8 and 10.

> (rf <- randomForest(x,y,mtry=8))
Call:
randomForest(x = x, y = y, mtry = 8)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 8

Mean of squared residuals: 9.552806

> > (rf <- randomForest(x,y,mtry=10))
Call:
randomForest(x = x, y = y, mtry = 10)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 10

Mean of squared residuals: 9.774435

mtry the main tuning parameter and typically performance is not
sensitive to its choice (can use tuneRF to select it automatically)

49

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Hyperparameters — Number of Trees
❖ More the merrier — limited by computational budget, having

too many does not cause Bagging to overfit
❖ 500 trees is a typical choice
❖ More trees gives a smoother surface

26 Classification forests

Fig. 3.3: A first classification forest and the e↵ect of forest size

T . (a) Training points belonging to two classes. (b) Di↵erent training

trees produce di↵erent partitions and thus di↵erent leaf predictors. The

colour of tree nodes and edges indicates the class probability of training

points going through them. (c) In testing, increasing the forest size

T produces smoother class posteriors. All experiments were run with

D = 2 and axis-aligned weak learners. See text for details.

data which is “di↵erent” than the training data. The larger the di↵er-

ence, the larger the uncertainty. Thanks to all trees being di↵erent from

one another, increasing the forest size from T = 1 to T = 200 produces

much smoother posteriors (fig. 3.3c3). Now we observe higher confi-

dence near the training points and lower confidence away from training

regions of space; an indication of good generalization behaviour.

For few trees (e.g. T = 8) the forest posterior shows clear box-

like artifacts. This is due to the use of an axis-aligned weak learner

model. Such artifacts yield low quality confidence estimates (especially

[Image taken from: Criminisi, Antonio, Jamie Shotton, and Ender Konukoglu. "Decision forests: A
unified framework for classification, regression, density estimation, manifold learning and semi-

supervised learning." Foundations and Trends® in Computer Graphics and Vision 7.2–3 (2012): 81-227.]

50

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Computational Cost

Training in O(n(log(n))2Bmtry) for n× p data with B trees
Prediction in O(log(n)B)
These are not a typos, their costs are actually independent of p!

We may wish to increase mtry (and potentially also B) as p increases we can
indirectly increase cost with larger p
Typically though, we set mtry to be a sublinear function of p, with
mtry = blog2 pc and mtry = b√

pc being common choices

RFs are thus cheaper to train than bagged trees, substantially so for
large p
For large p, training a RF can even be cheaper than training a single
decision tree, particularly if we need to use pruning for the latter

51

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Variable “Importance”

Tree ensembles have better performance, but decision trees are more
interpretable.
How to interpret a forest of trees ?

Idea: denote by ê the out-of bag estimate of the loss when using the original
data samples. For each variable k ∈ {1, . . . , p},

permute randomly the k-th predictor variable to generate a new set of
samples (X̃1, Y1), . . . , (X̃n, Yn), i.e., X̃(k)

i = X
(k)
τ(i), for a permutation τ .

compute the out-of-bag estimate êk of the prediction error with these new
samples.

A measure of importance of variable k is then êk − ê, the increase in error rate
due to a random permutation of the k-th variable.

52

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Example for Boston Housing data.

rf <- randomForest(x,y,importance=TRUE)
varImpPlot(rf)

zn

chas

rad

black

indus

tax

age

ptratio

crim

nox

dis

lstat

rm

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25 30 35

%IncMSE

53

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Random Forests Pros and Cons

+ Very easy to use and
applicable to a wide range of
problems

+ Fast at train and test time

+ State-of-the-art for many
applications

+ Particularly good for small to
medium datasets

+ Work very well “out-of-the-
box”, i.e. without tuning

63

- Typically worse than deep
neural nets for huge
datasets

- Little flexibility to tune to
specific problems

- Good performance can
required data
preprocessing using some
sort of feature extractor

54

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Extensions

Various further extensions to random forests exist
Most look to increase diversity even more by adding further randomness
to the training process

Extremely Randomized Trees forms an ensemble where the tree
structures are predominantly or even complete random
Other methods split along randomized hyperplanes rather than using
individual features to create further diversity

Breiman (2001), Geurts et al (2006), Rainforth and Wood (2014)55

http://link.springer.com/article/10.1023/A:1010933404324
http://link.springer.com/article/10.1007/s10994-006-6226-1
https://arxiv.org/pdf/1507.05444.pdf

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Hyperplane SplitsCanonical Correlation Forests (2)

72

CANONICAL CORRELATION FORESTS

(a) Single CART (b) RF with 200 Trees

(c) Single CCT (d) CCF with 200 Trees

Figure 1: Decision surfaces for artificial spirals dataset. (a) Shows the hierarchical partitions and
surface for a single axis aligned tree while (b) shows the effect of averaging over a number of,
individually randomized, axis aligned trees. (c) Shows a single canonical correlation tree (CCT) and
(d) demonstrates that averaging over CCTs to give a canonical correlation forest leads to “smoother”
decision surfaces which better represent the data than the axis aligned equivalent.

3

Rainforth and Wood (2014)56

https://arxiv.org/pdf/1507.05444.pdf

Ensembles: Bootstrapping, Bagging, and Random Forests Random Forests

Useful Packages / Further Reading
❖ Scikit learn (python) - http://scikit-learn.org/stable/ - open source package

with lots of machine learning algorithms built in.
❖ TreeBagger (Matlab) — https://uk.mathworks.com/help/stats/treebagger.html
❖ C++ — https://github.com/bjoern-andres/random-forest
❖ R — https://www.tutorialspoint.com/r/r_random_forest.htm
❖ Weka (stand alone) — http://www.cs.waikato.ac.nz/ml/weka/ - Gui with java

back end, operates on csv files and allows lots of algorithms to be used at once
❖ Complete tutorial paper: Decision Forests for Classification, Regression, Density

Estimation, Manifold Learning and Semi-Supervised Learning. Criminisi et al
2014. https://www.microsoft.com/en-us/research/wp-content/uploads/
2016/02/decisionForests_MSR_TR_2011_114.pdf

❖ A good high level introduction with code examples in python: https://
www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-
modeling-scratch-in-python/

57

	Ensembles: Bootstrapping, Bagging, and Random Forests
	Ensembles
	Motivation
	Bootstrapping
	Bagging
	Random Forests

