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Recap: Regularization for Decision Trees

Trees can overfit if they are too large

so we usually look to regularize or
prune them
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Individual Trees are Not Good Predictive Models
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Ensembles: Bootstrapping, Bagging, and Random Forests BIEyS=n sl

Learn Multiple Trees and Average Their Predictions
Instead
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Ensembles: Bootstrapping, Bagging, and Random Forests BIEyS=n sl

Different Trees will Make Different Errors: Averaging
Can Cancel Errors Out
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Decision Ensembles are More Powerful Models

Decision ensembles (also known
as forests) are fundamentally
more powerful models than
individual trees
@ They can have more complex
decision boundaries
@ They reduce the variation on
predictions: we can average
away the errors as not all trees

will make the same “mistakes 2 0 2 4 6
@ They are less prone to X

overfitting (-1)
@ No need to prune Figure: Decision surface

for a random forest



Ensembles: Bootstrapping, Bagging, and Random Forests [V s

Forests have a huge number of applications

Motion Detection

Image Classification

baseball-bat

Processing Satellite
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[Image Credits: Bosch et al and Gram-Hansen et al]
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Ensembles: Bootstrapping, Bagging, and Random Forests [V s

Microsoft Kinect Pose Recognition

https://youtu.be/IntbRsi81U8?2t=41

https://www.microsoft.com/en-us/research/wp-content/
| uploads/2016/02/BodyPartRecognition.pdf



https://youtu.be/lntbRsi8lU8?t=41
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BodyPartRecognition.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BodyPartRecognition.pdf

Ensembles: Bootstrapping, Bagging, and Random Forests [V s

Forests are extremely easy to use

Number of trees (bigger the better)

RF = TreeBagger(200,XTrain,YTrain); % Training
preds = predict(RF,XTest); % Predict

@ Applicable to wide range of problems and data types
@ Extremely fast



Ensembles: Bootstrapping, Bagging, and Random Forests [V s

Average Average
Rank Error (%)
Classifier R E

CCP 28.87 | 14.08
Random forests and Sompoly VM) ] 3153 .55
. . . svmRadialCost (SVM) | 31.84 | 15.33
their extensions give wmC W) | %2 | 1567
elm_kernel (NNET) 32,19 15.20
spectacular out-of-the perRE D50 [T531]
svmRadial (SVM) 33.77 | 15.68
box performance: 7 out TN EE R EE ]

S————
rforest_R (RF) 40.70 | 15.82
w——

of the top 20 classifiers ST P T
C50-t (BST) 42.61 | 16.85

frorn a survey Of 180 nnett (NNET) | 42.87 | 18.74
. avNNet_t (NNET) 43.26 | 18.77
classifiers on 82 datasets RottionForest [ 44.62] 16.64]
caNNet_t (NNET) |45.86 | 19.28

are b ased on them " mlp_t (NNET) | 46.06 | 17.38

LibSVM (SVM) | 46.50 | 16.65
MB_LibSVM (BST) |46.90 | 16.82
RRE_{ (RF) 49.56 | 16.71]

[Rainforth, Tom, and Frank Wood. "Canonical correlation forests." arXiv preprint arXiv:1507.05444 (2015).]
[Fernandez-Delgado, Manuel, Eva Cernadas, Senén Barro, and Dinani Amorim. "Do we need hundreds of classifiers
to solve real world classification problems?." The Journal of Machine Learning Research 15, no. 1 (2014): 3133-3181.]



Ensembles: Bootstrapping, Bagging, and Random Forests Motivation

Ensembling is much more general than just the concept of decision tree
ensembles

We can take almost any machine learning model and convert it into an
ensemble (e.g. we might also construct an ensemble of neural networks)
General idea is always the same: train multiple instances of the model
and then combine their predictions to a single prediction (usually by
averaging)

To ensure that we do not just end up with the same predictions as a
single model, we need to introduce some form of randomness into the
training process.

To construct a good ensemble we need to ensure we get a good balance
between the diversity of the constituent models (i.e. how correlated the
errors they make are) and their individual predictive power
Ensembling almost always improves the performance compared to a
single model at the expense of increased cost

@ Machine learning “competitions” (e.g. Kaggle) are usually won by some sort
of ensemble method, often an ensemble of neural network



.
Key Questions

@ How should be introduce randomness into the training process?

@ Though this can vary depending on the base model, our focus will be on a
universally applicable method called bagging and some additional methods
that are specific to decision trees

@ How can we control the diversity vs predictive power trade-off?
o This will effectively boil down to controlling how much randomness we instill.



Ensembles: Bootstrapping, Bagging, and Rat n Forests ‘Bootslrapping

Bootstrapping




Ensembles: Bootstrapping, Bagging, and Random Forests SI=LIISE I Te]

Model Variability

@ To have an effective ensemble, our individual models need to make
different errors in their predictions: we need diversity

@ Some algorithms have instability in their training such that small
changes in data can lead to large differences in the learned model

@ Decision trees and neural networks are unstable algorithms, k-nearest
neighbors are stable

@ Bootstrapping allows us to exploit instabilities to produce a diverse set
of models by training each on a slightly different dataset
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Bootstrap Sampling

+ Samples a new dataset from the old dataset by
resampling with replacement

* Each new sample is drawn independently from the full
old dataset

43
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Bootstrap Sampling

+ Samples a new dataset from the old dataset by
resampling with replacement

* Each new sample is drawn independently from the full

>

old dataset
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Bootstrap Sampling

+ Samples a new dataset from the old dataset by
resampling with replacement

* Each new sample is drawn independently from the full
old dataset

@ oo
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Bootstrap Sampling

+ Samples a new dataset from the old dataset by
resampling with replacement

* Each new sample is drawn independently from the full
old dataset
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Bootstrap Sampling

+ Samples a new dataset from the old dataset by
resampling with replacement

+ Each new sample is drawn independently from the full
old dataset

* 0
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Bootstrap Sampling

+ Samples a new dataset from the old dataset by
resampling with replacement

+ Each new sample is drawn independently from the full
old dataset

* 0:-0:
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Boaistapping
Bootstrap for Decision Trees

@ The bootstrap is itself a way to assess the variance of estimators.
@ Fit multiple trees, each on a bootstrapped sample.

> n <- nrow(Pima.tr)

> bss <- sample(l:n, n , replace=TRUE)

> sort (bss)

[1] 2 4456 7910 11 12 12 12 12 13 13 15 15 20

> tree_boot <- rpart (Pima.tr[bss,8] ~ ., data=Pima.tr[bss,-8],
control=rpart.control (xval=10)) ## 10-fold CV

glu< .123'5 lu< 123.5

ped<0.348

No

lu< 1164.5 bmi< P8.65




Bootiapping
Example: Bootstrap for Regression Trees

@ Regression for Boston housing data.
@ Predict median house prices based only on crime rate.

@ Use decision stump—the simplest tree with a single split at root (note
this for the purposes of the example on not good practice in general)

50
1
8
8
®
3
3

crime>=1.918
T

40
L

30
L

MEDIAN HOUSE PRICE
20
I

13.44 24.44

10
I

LOG( CRIME )



Bootiapping
Example: Bootstrap for Regression Trees
@ We are aiming to fit a predictor f(z) and have data {(z;, y;)}™ ;.

@ Assess the variance of f () by taking B = 20 bootstrap samples of the
original data, and obtaining bootstrap estimators

f’e), b=1,....B

@ Each tree /" is fitted on the resampled data (z;,,y;,)?, where each j; is
chosen randomly from {1, ..., n} with replacement.

50
I
8
8
8
8

40
L

MEDIAN HOUSE PRICE
20
I

MEDIAN HOUSE PRICE

10
L

20 LOG( CRIME ) LOG( CRIME )
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Original

Creating
Diversity: g g Dataset

e / \
Dataset 1 * Dataset 2 Dataset L

A4 A4 A4

Train Tree 1 Train Tree 2 Train Tree L
50



Ensembles: Bootstrapping, Bagging, and Random Forests ‘Bagging‘

Average Predictions over Trees

X X X
Treet=1 l t=2 l t=3 l
ﬁ} AT ARARRRR ]4] AR J//J
LI LAACRRRARARARANY LAAAARECCREE AAR RAAAAAAAARNR CAAAAAR EAAL [AA ARE L LM
| L
p(Y]X) =+ > p(Y]X)
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Ensembles: Bootstrapping, Bagging, and Random Forests ‘Bagging
Bagging

@ Bagging (Bootstrap Aggregation): average across all B predictive
models (e.g. trees) fitted on different bootstrap samples.

Q@ Forb=1,...,B:
@ Draw indices (j1, ..., jn) from the set {1,...,n} with replacement.
@ Fit the model, and form predictor f*(z) based on bootstrap sample

($j17yj1)7 BERE) (l‘j",yjn)

@ Form bagged estimator

24



Ensembles: Bootstrapping, Bagging, and Random Forests ‘Bagging‘
Bagging

MEDIAN HOUSE PRICE
20
I

MEDIAN HOUSE PRICE

LOG( CRIME ) LOG( CRIME )

@ Bagging smooths out the drop in the estimate of median house prices.
@ In general, bagging reduces the variance of predictions

25



___ Ersembles:Bootrappig, Bagging and Random Foress Il
Variance Reduction Through Aggregation

@ Consider an ideal world where we can draw a complete new dataset at
will without having to perform bootstrapping, such that we can construct
estimators f,,, each based on different independent datasets of size n
from the true joint distribution of X, Y.

@ The aggregated estimator would then be

fag me [f( )] as B —»

m=1

where expectation is with respect to independent datasets of size n.
@ Using the standard bias-variance decomposition and the law of large
numbers, the squared-loss to the optimal classifier f, for input z is

Ep[(f.(x) = fag())?] = (fu(x) = f(2))® + Ep[(f(2) — fag(2))?]
= (fu(x) = f(2))* + éED[(f(x) — f(2))?]
- (fu(2) — f(z))? as B — co.

@ Aggregation reduces the squared loss by reducing the variance of f(x).
26



Begging
Variance Reduction Through Bagging

@ For bagging, our setup is similar, but our estimators are now based on
the bagging estimators f* trained on resampled versions of the dataset.

@ We thus have
B
Frag(x) = ! > @)= f(@,D) 2 E; i [f'(2)|D] as B — oo

where the expectation is now over the resampling indices.
@ We thus have (not examinable):

E[(f+(x) = foag(2))?] = Ep [E [(f*(m - fbag(x»?\p”
—Ep [E [(f.(2) — (2, D)?|D]] + Eo [E[(7(2, D) = fiug(@)?|D]]

=E» [(fu(x) ~ f(@, D)) + £E (7, D)~ ()]
—Ep [(fi(z) — f(x,D))Q] as B — oo.

27



Begging
Variance Reduction Through Bagging

@ In general, the variance of f(x, D) will be less than that of f(z), i.e. the
base model trained on the full dataset
o ltis still non-zero as f(z, D) still varies with the dataset.

e Similarly the variance of the bagging estimator f,., () is generally less
than that of f(X):

E | (fus(0) - E [fun(@)]) | B | (fl0) - £ [0)] )

@ This variance reduction comes at the cost of a small increase in bias, in
general:
2

(IE { f(x)} - f*(x))2 < (E [fbag(x)] — f*(:v))

@ Bagging is most useful for flexible estimators with high variance and
low bias.

29



Begging
Variance Reduction in Bagging

@ Deeper trees have higher complexity and variance, but lower bias.
@ Compare bagging trees of depth 1 and 3.

log(x$crim) log(xScrim)

20



Bagang
Out-of-bag Test Error Estimation

@ How well does bagging to? Can we estimate generalization performance,
and tune hyperparameters?

@ Sledgehammer approach: cross-validation.

i=l =2 =3 =4 =5 =6 =7 =8 =9 =10 i=11 i=12

MO OOOOE e 600o0

=~ ©®® 0000600006 ae

=©® @000/ 06e

ocooleeee®e®®O®®

v=4

@ Foreachv=1,...,V,
o fit fa, oOn the training samples.
e predict on validation set.

@ Compute the CV error by averaging the loss across all test observations.
30



'Bagging

Out-of-bag Test Error Estimation

Ensembles: Bootstrapping, Bagging, and Random Forests

., V, we have to train

@ But to fit fz,, on the training set for each v = 1, ..

on B bootstrap samples!
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@ More elegant approach: Out-of-bag test error estimation.

31



Ensembles: Bootstrapping, Bagging, and Random Forests ‘Bagging

Out-of-bag Test Error Estimation

@ Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.
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Out-of-bag Test Error Estimation

@ Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.
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Bagang
Out-of-bag Test Error Estimation

@ Foreachi=1,...,n, the out-of-bag sample is:

B; = {b: z; is not in training set} C {1, ...

@ Construct the out-of-bag estimate at z;:

1

foob(xi) — |B| fb(iz‘)

(]

beB;
@ Out-of-bag risk:

Roob _ %ZL(yh]?OOb(l'i))

i=1

34



Bagang
Out-of-bag Test Error Estimation

35

We need | B;| to be reasonably large for all i = 1,...,n.

The probability 7°°° of an observation NOT being included in a bootstrap
sample (j1,...,jn) (@nd hence being ‘out-of-bag’) is:

n 1 1
oob n—oo
_|| 1—— — - =~0.367.
T ( ) B

- n
=1

Hence E[| B;|] ~ 0.367B

In practice, number of bootstrap samples B is typically between 100 and
1000, meaning that the number |B;| of out-of-bag samples will be
approximately in the range 35 — 400.

The obtained test error estimate is asymptotically unbiased for large
number B of bootstrap samples and large sample size n.

For finite B it will generally overestimate the test error as it is effectively
using a smaller ensemble



Ensembles: Bootstrapping, Bagging, and Random Forests ‘Bagging‘

36

Example: Boston Housing Dataset

@ Apply out of bag test error estimation to select optimal tree depth and
assess performance of bagged trees for Boston Housing data.

@ Use the entire dataset with p = 13 predictor variables.

n <- nrow (BostonHousing) ## n samples
X <- BostonHousing[,-14]

Y <- BostonHousing[, 14]

B <- 100

maxdepth <- 3
prediction_oob <- rep(0,length(Y)) ## vector with oob predictions
(

)
Y)) ## number pf oob trees

numbertrees_oob <- rep(0,length

for (b in 1:B) { ## loop over bootstrap samples
subsample <- sample(l:n,n, replace=TRUE) ## "in-bag" samples
outofbag <- (l:n) [-subsample] ## "out-of-bag" samples
## fit tree on "in-bag" samples

treeboot <- rpart(Y ~ ., data=X, subset=subsample,

control=rpart.control (maxdepth=maxdepth,minsplit=2))

## predict on oob-samples

prediction_oob[outofbag] <- prediction_oob[outofbag] +

predict (treeboot, newdata=X[outofbag,])
numbertrees_oob[outofbag] <- numbertrees_oob[outofbag] + 1

}

## final oob-prediction is average across all "out-of-bag" trees
prediction_oob <- prediction_oob / numbertrees_oob



Ensembles: Bootstrapping, Bagging, and Random Forests ‘Bagging‘

37

Example: Boston Housing Dataset

plot (prediction_oob, Y, x1ab="PREDICTED", ylab="ACTUAL")

For depth d = 1. For depth d = 10.

ACTUAL
ACTUAL

8
8

T T T T T T T
20 25 30 10 20 30 40

PREDICTED PREDICTED



Begging
Example: Boston Housing Dataset

@ Test error / out-of-bag error as a function of tree depth d:
treedepthd | 1 2 3 4 5 10 30

single tree f 60.7 448 328 312 277 265 273
baggedtreeszag 434 27.0 228 215 20.7 20.1 201

@ Without bagging, the optimal tree depth seems to be d = 10.
@ With bagging, we could also take the depth up to d = 30.

38



Bagoing
Bagging: Summary

@ Bagging reduces variance and helps prevent overfitting

@ In general, we do not need to prune when making forests and can often get
away without including any early stopping criteria

@ Almost always improves performance in practice (for non—trivial data)
compared to using a single tree

@ Because they can have more complicated decision boundaries, bagged
trees are generally fundamentally more powerful models

@ However, bagged trees lose much of the interpretability of single trees

@ Bagging is a general strategy: decision trees are the most common base
model, but can also be applied to other things like neural networks.

39



Baggng
Other Ensembling Approaches

@ For some base models, bagging is not best way of creating an ensemble
e Some models already have natural instabilities that can be exploited without
needing to take subsets of the data, e.g. the instability in neural network
training with respect to the initialization of the weights and biases
@ In some scenarios, the gains from variance reduction are outweighed by the
losses from increased bias due to using subsets of the data

@ In other scenarios, bagging does not give enough diversity and we can
get further gains by introducing additional randomization into the training
process in addition to (or instead of) bagging

@ Another common way of introducing diversity is to randomize the way
features are accessed by the classifier, such as by manipulating the form
of the features (e.g. through using random rotations) or restricting access
to certain features during the model training (e.g. using random
subspacing)

40
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Random Forests

'Random Forests




Random Forests

492

In general, bagging trees creates insufficient diversity: it is usually

beneficial to further randomize the training process

Random Forests (RFs) are an extension of bagged trees that introduce

an additional randomization: random subspacing (we’ll cover this next)
o Implemented in randomForest library in R

This tends to gives a better trade off between diversity and predictive

power of individual trees

RFs and their extensions remain some of the best performing models in

machine learning, particularly in the context of “out-of-the-box” use

because they typically do not require careful setting of any

hyperparameters

Breiman (2001)


http://link.springer.com/article/10.1023/A:1010933404324
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Average Average
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MB_LibSVM (BST) |46.90 | 16.82
RRE_{ (RF) 49.56 | 16.71]

[Rainforth, Tom, and Frank Wood. "Canonical correlation forests." arXiv preprint arXiv:1507.05444 (2015).]
[Fernandez-Delgado, Manuel, Eva Cernadas, Senén Barro, and Dinani Amorim. "Do we need hundreds of classifiers
to solve real world classification problems?." The Journal of Machine Learning Research 15, no. 1 (2014): 3133-3181.]
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Ensembles: Bootstrapping, Bagging, and Random Forests

Random Subspacing

+ At each node randomly select a
random subset of features to use

for the split search ol e ]
+ The number of features selected, e - !‘: b i

Muy is a hyperparameter

« Typically only select a small

number of features < -'.-!'.-.!-.-.-.-.-.-.
(e.g. Miry =logop or myry =p°3) ;E’ or - .

+ This means different trees will == -1-"'- == - mEEEEmEEEE
split along different dimensions Ak ez & _‘ e m e
at each node L

« Difference at earlier nodes, lead
to different data partitions at
later nodes and thus further : . s .
diversity -2 0 2 4

53
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44

Random Subspacing

+ At each node randomly select a
random subset of features to use
for the split search

+ The number of features selected,
Myry is a hyperparameter

« Typically only select a small
number of features

(e.g. muy=logp or myry =p©5) s OF

+ This means different trees will
split along different dimensions
at each node

« Difference at earlier nodes, lead

to different data partitions at
later nodes and thus further
diversity
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Ensembles: Bootstrapping, Bagging, and Random Forests

Random Subspacing

+ At each node randomly select a
random subset of features to use
for the split search

+ The number of features selected,

Muy is a hyperparameter

« Typically only select a small
number of features
(e.g. muy =logop or my =p°5) Or

+ This means different trees will ,a.;: o
split along different dimensions .
at each node R i

+ Difference at earlier nodes, lead ol S
to different data partitions at ’

later nodes and thus further : : ‘ :
diversity -2 0 2 4
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Random Subspacing

+ At each node randomly select a
random subset of features to use
for the split search

+ The number of features selected,

Muy is a hyperparameter

« Typically only select a small
number of features
(e.g. muy =logop or my =p°5) Or

+ This means different trees will
split along different dimensions 1t
at each node R

« Difference at earlier nodes, lead ol
to different data partitions at
later nodes and thus further
diversity -2

T

X1

o
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Random Subspacing

+ At each node randomly select a
random subset of features to use
for the split search

+ The number of features selected,

Muy is a hyperparameter

« Typically only select a small
number of features
(e.g. muy =logop or my =p°5) Or

+ This means different trees will ,a.;: o
split along different dimensions .
at each node R i

+ Difference at earlier nodes, lead ol B
to different data partitions at ’

later nodes and thus further : : ‘ :
diversity -2 0 2 4
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Random Forests = Bagging +
Random Subspacing
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1. Use bagging: generate a separate bootstrap dataset to train
each individual tree on

Original

c a Dataset

Dataset 1 { ‘ DatasetZ\ Dataset L

Train Tree 1 Train Tree 2 Train Tree L
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2. Train each tree by recursively greedily choosing the best
split (as per the split criterion) from set of randomly selected
features until a stopping criterion is reached

i
1 -
oL 1 & e
R 1 H
e ’ 1 :&'
X% I x
1 E : 1
« 1 .
B 0 : 1 InfoGain = 0.95
- ] 1
> BT | ’
;‘r'“": y 0 .
At " nE i
% I )
) 1
I 1
2 '
|
-2 0 2 4
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3. Make predictions by aggregating the predictions made by
individual trees (note bootstrapping is not used for evaluation)

X X X

Treet=1 t=2 t=3

—
—o.

o

—
— o _
>—eo.

i A
I A1

—
-
—
— ¢
¢
S

E
E
E
E

p(YIX) = 7 3 p(VIX)

[Adapted from: Criminisi, Antonio, Jamie Shotton, and Ender Konukoglu. "Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and semi-supervised

a4 learning." Foundations and Trends® in Computer Graphics and Vision 7.2-3 (2012): 81-227.]
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Looking at the Boston Housing data again
library (randomForest)

library (MASS)

data (Boston)

y <- Boston/[,14]
x <- Boston[,1:13]

?randomForest
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> rf <- randomForest (x,Vy)

> print (rf)

>

Call:

randomForest (x = x, v = V)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.26161

o

% Var explained: 87.84

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot ( predict(rf), vy)
> abline(c(0,1),col=2)

Same if treating the training data as new data

> plot ( predict (rf,newdata=x), vy)
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Out-of-bag error. Training error.
> plot ( predict(rf), vy) > plot ( predict (rf,newdata=x), V)
> abline(c(0,1),col=2) > abline(c(0,1),col=2)

10 20 30 40 10 20 30 40 50

predict(rf) predict(rf, newdata = x)
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Try mtry 2 (i.e. search over two features at each node)

> (rf <- randomForest (x,y,mtry=2))
Call:

randomForest (x = x, y =y, mtry = 2)
Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 12.17176

Try mtry 4

> (rf <- randomForest (x,y,mtry=4))
Call:

randomForest (x = x, yv = vy, mtry = 4)

Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 10.01574
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And mtry 8 and 10.

> (rf <- randomForest (x,y,mtry=8))
Call:

randomForest (x = x, y =y, mtry = 8)
Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 8

Mean of squared residuals: 9.552806

> > (rf <- randomForest (x,y,mtry=10)
Call:

randomForest (x = x, y = vy, mtry = 10)
Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 10

Mean of squared residuals: 9.774435

@ mtry the main tuning parameter and typically performance is not
sensitive to its choice (can use tuneRF to select it automatically)
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Hyperparameters — Number of Trees

*

+ More the merrier — limited by computational budget, having
too many does not cause Bagging to overfit

*

+ 500 trees is a typical choice

<&

More trees gives a smoother surface

) C3

[Image taken from: Criminisi, Antonio, Jamie Shotton, and Ender Konukoglu. "Decision forests: A
unified framework for classification, regression, density estimation, manifold learning and semi-
supervised learning." Foundations and Trends® in Computer Graphics and Vision 7.2-3 (2012): 81-227.]




Computational Cost

@ Training in O(n(log(n))?>Bmyy) for n x p data with B trees
@ Prediction in O(log(n)B)
@ These are not a typos, their costs are actually independent of p!
o We may wish to increase muy (and potentially also B) as p increases we can
indirectly increase cost with larger p
o Typically though, we set myy to be a sublinear function of p, with
muy = |log, p| and myy = [/p| being common choices
@ RFs are thus cheaper to train than bagged trees, substantially so for
large p
@ For large p, training a RF can even be cheaper than training a single
decision tree, particularly if we need to use pruning for the latter
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Variable “Importance”

@ Tree ensembles have better performance, but decision trees are more
interpretable.
@ How to interpret a forest of trees ?
Idea: denote by é the out-of bag estimate of the loss when using the original
data samples. For each variable k € {1, ..., p},
@ permute randomly the k-th predictor variable to generate a new set of
samples (X1,Y1),...,(X,.Y,), ie, X = Xi’(i)) for a permutation .
@ compute the out-of-bag estimate é, of the prediction error with these new
samples.

A measure of importance of variable & is then é; — é, the increase in error rate
due to a random permutation of the &-th variable.
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Example for Boston Housing data.

rf <- randomForest (x,y, importance=TRUE)
varImpPlot (rf)

Istat
dis o
nox °
crim °
ptratio o

age °

tax °

indus °

black °

rad °

chas °

zn o

T T T T T
5 10 15 20 25

%IncMSE
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Very easy to use and
applicable to a wide range of
problems

Fast at train and test time

State-of-the-art for many
applications

Particularly good for small to
medium datasets

Work very well “out-of-the-
box”, i.e. without tuning

63

'Random Forests

Random Forests Pros and Cons

- Typically worse than deep
neural nets for huge
datasets

- Little flexibility to tune to
specific problems

- Good performance can
required data
preprocessing using some
sort of feature extractor



.
Extensions

@ Various further extensions to random forests exist

@ Most look to increase diversity even more by adding further randomness
to the training process
o Extremely Randomized Trees forms an ensemble where the tree
structures are predominantly or even complete random
@ Other methods split along randomized hyperplanes rather than using
individual features to create further diversity

EE \Breiman (2001), Geurts et al (2006), Rainforth and Wood (2014)


http://link.springer.com/article/10.1023/A:1010933404324
http://link.springer.com/article/10.1007/s10994-006-6226-1
https://arxiv.org/pdf/1507.05444.pdf

Ensembles: Bootstrapping, Bagging, and Random Forests

Hyperplane Splits

(a) Single CART

'Random Forests

(b) RF with 200 Trees

56

\Rainforth and Wood (2014)


https://arxiv.org/pdf/1507.05444.pdf
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Useful Packages / Further Reading

+ Scikit learn (python) - http:/ /scikit-learn.org/stable/ - open source package
with lots of machine learning algorithms built in.

+ TreeBagger (Matlab) — https:/ /uk.mathworks.com /help/stats / treebagger.html

« C++ — https: ithub.com /bjoern-andres /random-forest

+ R — https:/ /www.tutorialspoint.com/r/r random _forest.htm
+ Weka (stand alone) — http:/ /www.cs.waikato.ac.nz/ml/weka/ - Gui with java

back end, operates on csv files and allows lots of algorithms to be used at once

+ Complete tutorial paper: Decision Forests for Classification, Regression, Density
Estimation, Manifold Learning and Semi-Supervised Learning. Criminisi et al
2014. https: / /www.microsoft.com /en-us/research / wp-content /uploads /
2016/02 /decisionForests MSR TR 2011 114.pdf

+ A good high level introduction with code examples in python: https:/ /

www.analyticsvidhya.com /blog /2016 /04/complete-tutorial-tree-based-
modeling-scratch-in-python/
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