Statistical Machine Learning
Hilary Term 2020

Tom Rainforth
Department of Statistics
University of Oxford

Slide credits and other course material can be found at:
http://www.stats.ox.ac.uk/~palamara/SML20.html|

March 5, 2020

http://www.stats.ox.ac.uk/~palamara/SML20.html

Decision Trees

Many decisions are tree-structured

Colds and fi

s i I3 utable for
chidren an adules.

Colds and flu

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Many decisions are tree-structured

Are you developing a rash that does not
fade when you press a glass tumbler or finger
against it?

yes no

Are you suffering from a stiff neck,
headache and d9 you find the light
nurts your eyes gnd/or you feeling
very sleepy and Fonfused?

Emergenc
("Dial 999")

yes no

Is there sneeing, a runny
nose, a mild temperature,
a sore throat,[and general
aches and pajns?

Emergency
("Dial 999") yes no

Are you feellng flushed,

hot and swefaty? Do you

have a highltemperature
100..

headache, ds well as 4
runny nose fnd general
aches and ppins?

Self-care

yes no

Self-care Self-care
(basic)

Many decisions are tree-structured

DOES IT MOVE?
|
! +
No Yes
Should it? Should it?
| |
! + + +
No Yes Yes No
No _-_ No
Problem % Problem
£

‘https://www.pinterest.co.uk/pin/281334307952272868/?lp=true

https://www.pinterest.co.uk/pin/281334307952272868/?lp=true

High Level |dea

@ Decision trees are predictive models that apply a hierarchical series of
queries to the input until a “leaf node” is reached

@ Predictions are then made by local leaf models, e.g. a class label,
probabilities over classes, a linear regression model, etc

@ Often used as means of constructing human—interpretable predictive
models

@ Also basis for more powerful machine learning methods like random
forests and boosting schemes

Terminology

@ The parent of a node c is the immediate predecessor node.

@ The children of a node ¢ are the immediate successors of ¢, equivalently
nodes which have c as a parent.

@ Branches are the edges/arrows connecting the nodes.

@ The root node is the top node of the tree; the only node without parents.
@ The leaf nodes are nodes which do not have children.

@ Subtrees are formed of a node and all is descendants

@ A C—ary tree is a tree where each node (except for leaf nodes) has C
children. Usually work with binary trees (C' = 2).

@ The depth of a tree is the maximal length of a path from the root node to
a leaf node (also sometimes refer to depth of an individual node).

@ Stumps (or decision stumps) are trees with just the root node and two
leaf nodes.

Decision trees

o)

Terminology
Parent _____ Binary Tree
of Node C
~
I
£
a
b S \‘ Leaf Nodes

Children
of Node C

Decision trees

Predicting from a Decision Tree

Root node

,,,,,,

Decision node \ 2

Leaf node

Decision trees

Predicting from a Decision Tree

Root node

Decision node \ 2

1 =
¢ f 1

t f t
® |
t f -2

N

Leaf node

o<

Decision trees

Predicting from a Decision Tree

Root node

Decision node \ 2

7 9 el
A J 1
t ,

f

t f t f 1 -

=, 00 9

f 2

N

Leaf node

t

Decision trees

Predicting from a Decision Tree

Root node

Decision node \ 2

\
\ 4 10
¢ s

t foot fo
O O
t f 2
AN
Leaf node

Decision trees

Predicting from a Decision Tree

Root node

Decision node \ 2

t f d

f

o<

Oé

f -2

N

Leaf node

t

T

Decision trees

Predicting from a Decision Tree

Root node
Decision node \ 2 .
.
1 =1

X2 0 .
XXXE .
-1 o

-2
-2 0

T

Leaf node

Decision trees

Predicting from a Decision Tree

Root node

Decision node

Ty

Leaf node

A tree partitions the feature space

@ A Decision Tree is a hierarchically organized structure, with each node
splitting the data space into pieces based on value of a feature.

@ Equivalent to a partition of overall space IR? into L disjoint feature regions
{RFal, ..., RIFa"}, where each R!®¥" C IR” and each corresponds to a leaf

@ Each leaf has a local decision or predictive model (often just a particular
class or value) that is applied for all z € R'#".

@ Note internal notes also correspond to regions of the space R ;, with the
region of a parent node being the union of the regions of its child nodes

Ri= UJ R
cechildren(y)

@ The union of all nodes at a particular depth also corresponds to the full
space

A tree partitions the feature space

T2

03

62

61 04 T1

Decision trees

Learning a tree model

Two things to learn:

@ The structure of the tree
and associated splitting
mechanisms, e.g. x; < 0,

@ The leaf predictive models
(A,B,..).

Key questions:
@ What makes a good tree?
@ How can learn trees from data?

Tree Training — High Level Idea

Algorithm 1 TRAINTREE (Training Data D)
1: if any stopping criteria are met then
2. return LEAFNODE(D)
3. else
4: Search over possible splits and chose the best one

5. Separate D into newly created child nodes, giving D1, ..., D¢

6

7

8

9

forc=1:Cdo
child-sub-tree. <+~ TRAINTREE(D,)
end for
return Subtree with current node as root, chosen split, and child sub-
trees
10: end if

@ For classification the main stopping criteria is that we stop splitting if a
node is pure, i.e. all of the samples it contains are of the same class.
Other criteria are discussed later

@ LEAFNODE(D) produces a local leaf predictor from local data D

Leaf Predictors

Let’s start by thinking how to setup the leaf predictors in a classification tree:
@ Assume that we are given a dataset D = (x1,v1), - .., (@n,yn), Where
z; € R,y GY:{I,...,m},
@ For a given structure and splits, we can minimize the empirical risk for the
overall tree by separately minimizing the empirical risk for each leaf

@ The most common predictive model for each leaf is use the empirical
probability of each class (i.e. relative frequency in the training data).

@ The estimated probability of each class % in region R ; is now simply:

~ 2 My =k) -z € Ry)
Pk = >il(@i € Ry)

@ Equivalently, we can express this in terms of the data D; C D at node j

. 1
b=~ Y W=)

J i€D;

where n; is the number of training samples at the node

What makes a good split?

top bottom
1 1
@
- '0 ° ﬁ@ 08 08
% ; o, ". 08 06
@ 3-”:“"'0 By 04
data before split class distribution ?®
1 8° 02 02
zlo ® ﬁ@ b |le ° q 4
3 (S 08
]
ol e oo 0". 0s
Q @,
3 "% " % left right
1 1
‘.. 02 o ® !
a 0 I .0 o 4 08 08
%’_ o® % 0" 06 06
© "’. H @ 0.4 0.4
H ‘.‘ 02 02
cleo 1% 0o .

@ Good splits will produce children with better predictive power

@ Equivalently, good splits will produce purer nodes (i.e. nodes with
concentrated distribution on their classes)

Adapted from: Criminisi et al, Decision Forests, 2012
15

Entropy of a Node

@ We can evaluate the predictive power of a node through the entropy over
classes

ZP =k)log, P(Y = k)

@ Given data D; at node j, we can evaluate this entropy based on the
empirical entropy of the training data at that node

K
Hj == pjxlogypjn
k=1

@ This is effectively the entropy of the predictive model if this node was
turned into a leaf

@ Purer nodes will have lower entropy

What makes a good split?

top bottom
1 1
. ® '. o 05| Entropy =1.49 | Entropy = 1.46
= ; oq ®° 06
2 |- %o ... o
v ’v. Fo 0.4 04
data before split class distribution ?®
. 1 b ‘.. 02 I I 02
= o8] Entropy=2 Q 0 0
"g 04 left right
@ ' 1 1
02| o H
g] ~ '. o 0s|] Entropy=1] Entropy=1
% ; o ". 06 0§
" ’%’. E @ 04 I 04 H
H .‘ 02 0.2
[[°] 1 8 LY o

Adapted from: Criminisi et al, Decision Forests, 2012
17

Information Gain

@ A split criterion is a way to measure how good a hypothetical split will be
@ We can use it to decide between possible splits when training a tree

@ One common split criterion is to use node entropy to calculate the
information gain of a split

@ The information gain of a split is the reduction in entropy in the predictive
distribution from adding the split, where we assume that new inputs take
each branch in proportion to the number of training samples that follow
the branch

@ Using n; to represent the number of training samples in node j, we have

InfoGain = H; —) Leq,
ceChildren(5) "

where we note that n; = >~ . cpiigren(;) e
@ Gaining information reduces uncertainty in our predictions

What makes a good split?

Information Gain =2 - 0.52*1.49 - 0.48*1.46 = 0.52

top bottom
1 1
A ’. o o] Entropy =1.49 | Entropy = 1.46
- X .
£l .“.""" 0- o] 52% Data | 48% Data
L] "95. '0 0.4 0.4
data before split class distribution .‘ - od
1
£ E - b |e 8%
= os| Entropy =2 o @
ol e
E 0.6
£ 04) left ; right
) H
a N P 'o o ﬁ os|] Entropy=1 5| Entropy=1
' Sog o2° o 50%Data | 50% Data
’9. E '3 0.4]

04
..‘ 02 02
LY d

Information Gain=2-0.5*1-0.5*1 =1

Adapted from: Criminisi et al, Decision Forests, 2012
19

Other Split Criteria

20

Information gain is not the only commonly used split criterion

Other approaches use a different measure of uncertainty to entropy,
before looking in the gain in that uncertainty metric in an analogous
manner to information gain

In general, we thus have that the gain for a hypothetical split node of j
under uncertainty metric B(-) is

Gain = B(D;) — i > neB(D.)

n;j -)
ceChildren(y)

Note that when we are choosing a split, B(D,) is fixed, but different splits
will give different partitions in the children and thus different gains

e Any split that partitions the data in same way has the same gain

B(D;) effectively represents how bad node j is: splits with high gains
produce children with low uncertainties

Uncertainty Metrics

@ Possible choices for B(-) include (remember p; ;, is the empirical
probability of class of & for node j)
o Entropy (measured in bits):

K
B(D;) == fjxlogs pin
k=1

o Gini Impurity (sometimes called Gini index):
K

B(Dj) =1- ﬁ?,k
k=1

o Misclassification error (rarely used in practice):

B(D;)=1— b
(Dj) Lo nax Dy

@ CA4.5 Tree algorithm: Classification uses entropy to measure uncertainty.
@ CART (class. and regression tree) algorithm: Classification uses Gini.

21

Different measures of uncertainty

Different uncertainty metrics for single split of binary classification function as
proportion of points p of the first class:

r

0.5 -

I Entro
0.4 L Giniindex Py
0.3

Misclassification error
0.2 -

0.1 |~

0.0 =

Y

290

Algorithm

Why misclassification error is bad uncertainty metric

Before split

data before split

class distribution

Split 1

o

split 2

top

n

bottom

right

Misclassification error gives the same gain of 0.25 to both these splits

Adapted from: Criminisi et al, Decision Forests, 2012

21

Splitting a Node: Exhaustive Search

24

@ Though some alternatives exist, most training approaches only split
based on a single feature (i.e. our splits are “axis-aligned”)

@ The standard approach is to perform exhaustive search over the set of
possible splits and pick the one with the highest gain

@ For categorical features, we can either create a new child for each
possible realization of the variable, or group realizations together to
reduce the number of children (e.g. to create a binary spilit)

@ For numerical features, we consider binary splits placed halfway between
consecutive feature values. This ensures the number of allowed splits is
finite.

@ From a predictive perspective, binary splits are always best, but using
larger numbers of children can make the tree more user—friendly

o Note that any tree with multi-way splits can be reformulated into a binary tree
by repeatedly splitting on the same variable

Algorithm

2
1
=0
-1
2
2 0 2 4
X
2
11,z InfoGain
g1 -+ =0.68
Sof - :
s - - m m m m om N
-1 b
2
2 0 2 4
X

25

'

[N
E : : InfoGain
o _

o —0-97.
2 2 4
'

1
1

: 1

= : InfoGain
1 =095
n L
xl" .
LIS
1
[|

2 2 4

X1

Algorithm

0.6

Gain

0.4

0.2

2 T x_ :,(;* o .
E P
x ”‘:

-2 0 2 4 0 0.2 0.4 0.6 0.8

Gain

26

Algorithm

Recursively Repeat Process for New Nodes

Once we have split a node, we simply call the same tree training algorithm on
each of the new child nodes, leading to a recursive, self-similar training
scheme

Left Child Right Child
2 2l
1t " 1
1 B 1
2| 2 :

2 0 2 4

X1 X

27

Tree Training Algorithm Recap

Algorithm 2 TRAINTREE (Training Data D)
1: if any stopping criteria are met then
2: return LEAFNODE(D)
3: else
4: Search over possible splits and chose the best one

5. Separate D into newly created child nodes, giving D4, ..., D¢

6

7

8

9

forc=1:Cdo
child-sub-tree. <— TRAINTREE(D,)
end for
return Subtree with current node as root, chosen split, and child sub-
trees
10: end if

29

Example: A tree model for deciding where to eat

Decide whether to wait for a table at a restaurant, based on the following
attributes (Example from Russell and Norvig, AIMA)

@ Alternate: is there an alternative restaurant nearby?

Bar: is there a comfortable bar area to wait in?

Fri/Sat: is today Friday or Saturday?

Hungry: are we hungry?

Patrons: number of people in the restaurant (None, Some, Full)
Price: price range ($, 3, $$$)

Raining: is it raining outside?

Reservation: have we made a reservation?

Type: kind of restaurant (French, Italian, Thai, Burger)

Wait Estimate: estimated waiting time (0-10, 10-30, 30-60, >60)

20

Example: A tree model for deciding where to eat

Choosing a restaurant
(Example from Russell & Norvig, AIMA)

Example Attributes Target
Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
Xy T| F | F T |Some| $3% F T | French| 0-10 T
X, T| F | F T | Full $ F F | Thai |30-60 F
X3 F| T | F F |Some| § F F | Burger| 0-10 T
X, T| F | T| T | Full $ F F | Thai |10-30 T
X; T| F | T| F | Full | 388 F T | French| >60 F
Xs F| T | F T |Some| $$ T T | Italian| 0-10 T
X7 F| T F F | None| § T F | Burger| 0-10 F
X3 F| F | F T |Some| $$ T T | Thai | 0-10 T
Xy F T T F Full $ T F | Burger| >60 F
X0 T| T T T Full | $$$ F T | Italian | 10-30 F
Xn F| F | F F | None| §$ F F | Thai | 0-10 F
X T| T | T T | Full $ F F | Burger| 30-60 T

Classification of examples is positive (T) or negative (F)

30

Algorithm

Start with root node containing all data

Which attribute to split?

None Some Full French Italian Thai Burger
0000 00 o e 00 o0
o000 ° o oo o0

Patrons? is a better choice—gives information about the classification

Patron vs. Type?
By choosing Patron, we end up with a partition (3 branches) with smaller entropy, ie,
smaller uncertainty (0.45 bit)

By choosing Type, we end up with uncertainty of | bit.

Thus, we choose Patron over Type.

31

Uncertainty if we go with “Patron”

For “None” branch

0 ., 0 2 2\
0+2 8042 " 0+2 ®012) "

T
For “Some” branch
4 4 4
— log + log > =0 None Some Full
(4+0 440 4+0 440 0000 00
For “Full” branch o0 o000

2 2 4 4

- 1 1 ~ 0.9
<2+4 %5124 °g2+4>

For choosing “Patrons”

weighted average of each branch: this quantity is called conditional entropy

p 4 6
S04 04 5 0.9 = 0.45

32

Algorithm

Conditional entropy for Type

For “French” branch 000000
000000
1 1 1 n 1) 1 1 &
- O; O = ype?
T+1 8141 "141 %141

T French Italian Thai Burger
For “Italian” branch 6 oo Y
(-] e o0 o0

1 1 1 + 1) 1 1
- 0] 0 =
T+1 8141 141 %141
For “Thai” and “Burger” branches

2 o2 22\
242 %942 942 ®oyo) T

For choosing “Type”

weighted average of each branch:

2 1-1-2 1-|-4 1-|-4 1=1
— % — % — % —*x1=
12 12 12 12

33

Algorithm

34

Do we split on “Non” or “Some”?

No, we do not

None Full
0000 00
o0 o000

The decision is deterministic, as seen from the training data

Algorithm

next split? 333822
Patrons?
We will look only at the 6 instances with Nono_—"some Fu
Patrons == Full 0000 Seee
}:L\'amplc Attributes Laigoy
Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X, T| F | F T |Some| $$$ F T | French| 0-10 T
X, T|F | F| T |Full| $ F | F | Thai |30-60 F
X3 F| T | F| F |Some| $ F F | Burger| 0-10 T
X, T| F | T| T |Full| $§ F | F | Thai |10-30 T
X T| F | T| F | Full | $8 | F | T |French| >60 5
Xs F| T | F T |Some| $$ T T | Italian | 0-10 T
X7 F| T | F F | None| $ T F | Burger| 0-10 F
Xs F| F | F T |Some| $$ T T | Thai | 0-10 T
Xq F| T | T | F | Ful $ T F | Burger| >60 =
X0 T| T | T| T | Full | 8 I5 T | Italian | 10-30 F
Xn F| F F F | None| § F F | Thai | 0-10 F
X2 T| T | T| T | Full| $ E F | Burger| 30-60 T
Classification of examples is positive (T) or negative (F)

35

Greedily, we build

| Reservation? || FriSat? |

Nol/\Yes

36

Algorithm

An Algorithm for Classification Trees

Assume numerical features for simplicity (see Section 9.2.4 in ESL for

categorical).
@ Start with root node with all data R; = X = RP.
@ For each feature m = 1,...,p, for each value v € R that we can split on:

@ Split data set:

I<:{i:m£m)<v} I>:{i:x£m)211}
@ Estimate class probabilities for each hypothetical child node:
P Dicr Vi o = Dier, Yi
A N

© Compute the gain of the proposed split, e.g., using entropy, (note we can
ignore the constant term)

- | 1<| . 11> | .
Gain = constant - | —————B + ———_B
(f<|+f>| b+ 3 PP

@ Choose split, i.e., feature m and value v, with biggest gain
@ Recurse on both children, with datasets (z;,v:)icr. and (z;, y;)ier- -

37

Computational Considerations

Numerical Features
@ We could split on any feature, with any threshold
@ However, for a given feature, the only split points we need to consider are
the the n values in the training data for this feature.

@ If we sort each feature by these n values, we can quickly compute our
impurity metric of interest (cross entropy or others), skipping values
where labels are unchanged.

@ This takes O(p nlogn) time (sorting n elements takes O(nlogn) steps).

Categorical Features

@ Assuming q distinct categories, there are 27! — 1 possible binary
partitions we can consider.

@ If this becomes prohibitively large, we can replace the exhaustive search
with drawing a large number of sample partitions and choosing the best
one

38

Regression Trees

39

@ Regression trees are almost exactly the same as classification trees. The
only differences are
@ They have different local leaf models based on predicting a continuous
outputy € IR
@ These use different split criteria
@ The most common choice of predictive leaf model is just to have a
constant output prediction g; such that their overall predictive mapping
can be expressed in the form

L
2) =Y g -z €Ry)
j=1
@ Using the squared loss, the optimal parameters are the sample means:

72 die 1%'11(951'673]')
(l‘,‘ ER]')

zED

@ Other losses, such as the L; loss (producing the median), are also viable
@ Some algorithms make use of more complicated local leaf models, such
as a linear regression or even a Gaussian process

Split Criteria for Regression Trees

@ Regression tree split criteria are based on reducing a loss metric in the
same manner as for classification:

Gain = B(D;) — 1 > neB(D.)

T - X
ceChildren(y)

@ The difference is that B(-) now represents an empirical error

40

Split Criteria for Regression Trees (2)

@ The most common choice for B(-) is the empirical mean squared error

Brso(D) = — 3 (4 = fy(w))?

J i€D;

where fj(:c) is the predictive model that would be employed if the node
were a leaf.

@ For the common choice of a constant predictive model, we have

fil@) =y, = ni >

J i€D;

where we note this is independent of the =
@ Combing these choices, gives the following gain

) 1
Gain=constant— — > " (yi —)’

vy . Ny
ceChildren(j) i€ D,

41

Example of Regression Trees

X Feature Space
H I
'Y) [] []
% ! %
N eee 'S 72
e00 []
000y
51 > X
Regression Tree
x < S

492

Example of Regression Trees

3’\ Feature Space
tens
: 2 L : % 0z * *
.
¢ Y3
......... pt0e %
oo |y .
§ ! oo
5 o > x
Regression Tree

43

Example of Regression Trees

Feature Space

44

Regularization

@ We need to be careful to appropriately regularize the tree, e.g. by
introducing an appropriate maximum tree depth as a stopping criterion.

@ If the tree is too deep, we can overfit, if the tree is too shallow, we underfit

@ Max depth is a hyper-parameter that should be tuned by the data.

@ Can also have other early stopping criteria such as not splitting if the
current node exceeds a minimum number of datapoints at a node or a
minimum node error, or if a minimum level of gain is not achieved when
we try and split

Accuracy

06 On training data ——
On test data ——--

L L L L s L L L L
0 10 20 30 40 50 60 70 80 90 100
Size of tree (number of nodes)

45

Pruning

@ An alternative strategy is to create
an overly deep tree, and then
prune it

@ This involves collapsing down
some nodes to a single leaf node

@ Start at the leaves and step
upwards deciding whether to
collapse based on some metric

@ Produces smaller tree that is less
prone to overfitting

@ However, pruning can be
computational expensive

46

e

Regularized Objectives

47

@ In general, can also use a regularized objective, e.g.

R°™(T') 4 Asize(T)

@ Early stopping: grow the tree from scratch and stop once the criterion
objective starts to increase.

@ Pruning: first grow the full tree and prune nodes (starting at leaves), until
the objective starts to increase.

@ Pruning is preferred as the choice of tree is less sensitive to “wrong”
choices of split points and variables to split on in the first stages of tree
fitting.

e Horizon issue where no single split is helpful, but multiple splits are (e.qg.
XOR)

@ Can use cross-validation to determine optimal \.

Summary of learning trees

Advantages
@ Easily interpretable by humans (as long as the tree is not too big)
@ Computationally efficient
@ Handle both numerical and categorical data
@ Can produce arbitrarily complex predictors given enough data
@ Do not require the data to be stored even though they are non-parametric
@ Building block for various ensemble methods (more on this next lecture)

Disadvantages
@ Rather crude predictive model compared with more advanced techniques
@ Training can suffer from horizon issues (think about an XOR problem)
@ Limited theoretical underpinning
@ Can be difficult to find right level of regularization (e.g. max depth)
@ Unstable: small changes in input data lead to very different trees

48

49

Algorithm

Example: Neurosurgery

Patient information

_,[

Predictive model Prediction for the
(Decision Tree) success probabilty of
Neurosurgery

Recommend
Neurosurgery only for
certain patient groups

Type | Explanation Note
Patient | 1,449 patients with neurosurgery 2 year follow-up
Feature | 91 Features (61 Continuous / 30 Binary)
Label 1\[(:‘ID 1: 938 Patients ((iJ‘.?‘:A)
MCID 0: 511 Patients (35.3%)

50

Algorithm

Example: Neurosurgery

SRS Image

SRS Image

_Score < 3.45

Success
77.8%

Score < 2.9

Success
91.3%

~—
~—
—

Success

64.7%

Success
68.9%

SRS Mental
Score < 4.1

Success
61.7%

Success
77.5%

Weight
<765

Success
65.0%

Success
24.0%

Success
40.0%
SRS Mental —
Score < 4.1 T
Success Success
27.9% 47.9%
Trunk Shift
<155
Success Success
34.0% 55.3%
Sacral Slope
<495
Success Success
26.2% 63.6%

Algorithm

51

Example: Boston Housing Data

crim per capita crime rate by town

nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling

dis weighted distances to five Boston employment centres

lstat percentage of lower status of the population
(6 more features)

@ Predict median house value.

Algorithm

Data

ing

Boston Housi

Example

08

NOX
8.32

S30Id ISNOH NVIGIN

NOX
8.84

$30ldd ISNOH NVIGIN

S30I4d ISNOH NIAIW

LOG(CRIME)

LOG(CRIME)

Different possible splits (features and thresholds) result in different quality measures.

52

Example: Boston Housing Data

@ Overall, the best first split is on variable rm, average number of rooms per
dwelling.
@ Final tree contains predictions in leaf nodes.

m< 6.941
T

Istat>F14.4 rm< 7.437

crim>x7.393 nox>=).682¢

144 3335 219 459
crim>%6.992 dis>=[1.385

11.98 17.14 rm<6.543
45.58
21.63 27.43

53

Algorithm

54

Example: Pima Indians Diabetes Dataset
Goal: predict whether or not a patient has diabetes.

> library (rpart)

> library (MASS)

> data (Pima.tr)

> rp <- rpart (Pima.tr[,8] ~ ., data=Pima.tr[,-8]
>

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 200 68 No (0.66000000 0.34000000)

2) glu< 123.5 109 15 No (0.86238532 0.13761468)
4) age< 28.5 74 4 No (0.94594595 0.05405405) =«
5) age>=28.5 35 11 No (0.68571429 0.31428571)

10) glu< 90 9 0 No (1.00000000 0.00000000) =

11) glu>=90 26 11 No (0.57692308 0.42307692)

22) bp>=68 19 6 No (0.68421053 0.31578947) =

23) bp< 68 7 2 Yes (0.28571429 0.71428571) =

3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)
6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
12) glu< 166 27 6 No (0.77777778 0.22222222) «
13) glu>=166 8 2 Yes (0.25000000 0.75000000) =«
7) ped>=0.3095 56 15 Yes (0.26785714 0.73214286)
14) bmi< 28.65 11 3 No (0.72727273 0.27272727) *
15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444) =

Example: Pima Indians Diabetes Dataset

> plot (rp,margin=0.1); text (rp,use.n=T)
glu< 123.5
T

age< 28.5 ped< (.3095

70/4

13/6 215
glu< 166 bmi< [28.65
NL YL
21/6 2/6 N Yes
8/3 7/38

55

Algorithm

Two possible trees.

> rpl <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> plot (rpl);text (rpl)

> rp2 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8],
control=rpart.control (cp=0.05))
> plot (rp2) ;text (rp2)

lu< 123.5

ed< 0.3095

bmi<ps 65

No Yes

56

	Examples
	Decision trees
	Algorithm

