
Statistical Machine Learning
Hilary Term 2020

Tom Rainforth
Department of Statistics

University of Oxford

Slide credits and other course material can be found at:
http://www.stats.ox.ac.uk/~palamara/SML20.html

March 5, 2020

1

http://www.stats.ox.ac.uk/~palamara/SML20.html

Decision Trees

2

Examples

Many decisions are tree-structured108 CHAPTER 8. TREE-BASED CLASSIFIERS

Figure 8.1: Page taken from the NHS Direct self-help guide (left) and corresponding decision tree
(right)

and the entropy
i(p) = −

∑

l

pl log pl,

where p = (p1, . . . , pL) denotes the empirical distribution of the class labels in the partition.4 Figure
8.3 displays the Gini coefficient and the entropy for the two-class case. If the partition consists of only
one class (frequency p1 either 0 or 1), the impurity is 0. Are both classes equally present (frequency
p1 = 0.5), then both impurity measures are maximal.

When splitting a node with empirical distribution p into two nodes with empirical distributions pl

(left node) and pr (right node) the decrease in impurity is

i(p)− (πli(pl) + πri(pr)) ,

where πl is the proportion of observations that is allocated to the left node and πr = 1 − πl is the
proportion of observations allocated to the right node.

We now can use the decrease in impurity to “grow” the tree. Starting with one partition (i.e.
the root node), we repeatedly split all terminal nodes such that each time th decrease in impurity is
maximal. We can repeat this until no more decrease is possible. Figure 8.4 shows the decision tree
for the Pima Indians data set. The Pima Indians data set was collected by the US National Institute of

4It might occur that pl = 0, in this case we define 0 log 0 := 0.

3

Examples

Many decisions are tree-structured

108 CHAPTER 8. TREE-BASED CLASSIFIERS

Figure 8.1: Page taken from the NHS Direct self-help guide (left) and corresponding decision tree
(right)

and the entropy
i(p) = −

∑

l

pl log pl,

where p = (p1, . . . , pL) denotes the empirical distribution of the class labels in the partition.4 Figure
8.3 displays the Gini coefficient and the entropy for the two-class case. If the partition consists of only
one class (frequency p1 either 0 or 1), the impurity is 0. Are both classes equally present (frequency
p1 = 0.5), then both impurity measures are maximal.

When splitting a node with empirical distribution p into two nodes with empirical distributions pl

(left node) and pr (right node) the decrease in impurity is

i(p)− (πli(pl) + πri(pr)) ,

where πl is the proportion of observations that is allocated to the left node and πr = 1 − πl is the
proportion of observations allocated to the right node.

We now can use the decrease in impurity to “grow” the tree. Starting with one partition (i.e.
the root node), we repeatedly split all terminal nodes such that each time th decrease in impurity is
maximal. We can repeat this until no more decrease is possible. Figure 8.4 shows the decision tree
for the Pima Indians data set. The Pima Indians data set was collected by the US National Institute of

4It might occur that pl = 0, in this case we define 0 log 0 := 0.

4

Examples

Many decisions are tree-structured

https://www.pinterest.co.uk/pin/281334307952272868/?lp=true
5

https://www.pinterest.co.uk/pin/281334307952272868/?lp=true

Decision trees

High Level Idea

Decision trees are predictive models that apply a hierarchical series of
queries to the input until a “leaf node” is reached
Predictions are then made by local leaf models, e.g. a class label,
probabilities over classes, a linear regression model, etc
Often used as means of constructing human–interpretable predictive
models
Also basis for more powerful machine learning methods like random
forests and boosting schemes

6

Decision trees

Terminology

The parent of a node c is the immediate predecessor node.
The children of a node c are the immediate successors of c, equivalently
nodes which have c as a parent.
Branches are the edges/arrows connecting the nodes.
The root node is the top node of the tree; the only node without parents.
The leaf nodes are nodes which do not have children.
Subtrees are formed of a node and all is descendants
A C−ary tree is a tree where each node (except for leaf nodes) has C
children. Usually work with binary trees (C = 2).
The depth of a tree is the maximal length of a path from the root node to
a leaf node (also sometimes refer to depth of an individual node).
Stumps (or decision stumps) are trees with just the root node and two
leaf nodes.

7

Decision trees

Terminology

8

Decision trees

Predicting from a Decision TreeDecision Trees — Prediction

5

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x1

x2

t

t t

t

f

ff

f

9

Decision trees

Predicting from a Decision TreeDecision Trees — Prediction

6

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x1

x2

t

t t

t

f

ff

f

9

Decision trees

Predicting from a Decision TreeDecision Trees — Prediction

7

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x1

x2

t

t t

t

f

ff

f

9

Decision trees

Predicting from a Decision TreeDecision Trees — Prediction

8

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x1

x2

t

t t

t

f

ff

f

9

Decision trees

Predicting from a Decision TreeDecision Trees — Prediction

9

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x2

x1

t

t t

t

f

ff

f

9

Decision trees

Predicting from a Decision TreeDecision Trees — Prediction

10

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x2

x1

t

t t

t

f

ff

f

9

Decision trees

Predicting from a Decision TreeDecision Trees — Prediction

11

-2 0 2 4

-2

-1

0

1

2

Root node

Decision node

Leaf node

x1 < 1.3

x2 < 0.2 x2 < 0.3

x1 < �1.3

x1

x2

t

t t

t

f

ff

f

9

Decision trees

A tree partitions the feature space

A Decision Tree is a hierarchically organized structure, with each node
splitting the data space into pieces based on value of a feature.
Equivalent to a partition of overall space IRp into L disjoint feature regions
{Rleaf

1 , . . . ,Rleaf
L }, where each Rleaf

j ⊂ IRp and each corresponds to a leaf
Each leaf has a local decision or predictive model (often just a particular
class or value) that is applied for all x ∈ Rleaf

j .
Note internal notes also correspond to regions of the space Rj , with the
region of a parent node being the union of the regions of its child nodes

Rj =
⋃

c∈children(j)

Rc

The union of all nodes at a particular depth also corresponds to the full
space

10

Decision trees

A tree partitions the feature space

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

11

Decision trees

Learning a tree model

Two things to learn:
1 The structure of the tree

and associated splitting
mechanisms, e.g. x1 ≤ θ4

2 The leaf predictive models
(A,B, . . .).

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

Key questions:
What makes a good tree?
How can learn trees from data?

12

Algorithm

Tree Training – High Level Idea

Algorithm 1 TRAINTREE (Training Data D)
1: if any stopping criteria are met then
2: return LEAFNODE(D)
3: else
4: Search over possible splits and chose the best one
5: Separate D into newly created child nodes, giving D1, . . . , DC

6: for c = 1 : C do
7: child-sub-treec ← TRAINTREE(Dc)
8: end for
9: return Subtree with current node as root, chosen split, and child sub-

trees
10: end if

For classification the main stopping criteria is that we stop splitting if a
node is pure, i.e. all of the samples it contains are of the same class.
Other criteria are discussed later
LEAFNODE(D) produces a local leaf predictor from local data D

13

Algorithm

Leaf Predictors
Let’s start by thinking how to setup the leaf predictors in a classification tree:

Assume that we are given a dataset D = (x1, y1), . . . , (xn, yn), where
xi ∈ IR, yi ∈ Y = {1, . . . ,m},
For a given structure and splits, we can minimize the empirical risk for the
overall tree by separately minimizing the empirical risk for each leaf
The most common predictive model for each leaf is use the empirical
probability of each class (i.e. relative frequency in the training data).
The estimated probability of each class k in region Rj is now simply:

p̂j,k =
∑

i II(yi = k) · II(xi ∈ Rj)∑
i II(xi ∈ Rj)

Equivalently, we can express this in terms of the data Dj ⊆ D at node j

p̂j,k = 1
nj

∑
i∈Dj

II(yi = k)

where nj is the number of training samples at the node

14

Algorithm

What makes a good split?
What Makes a Good Split (for Classification)?

[Adapted from: Criminisi, Antonio, Jamie Shotton, and Ender Konukoglu. "Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and semi-supervised

learning." Foundations and Trends® in Computer Graphics and Vision 7.2–3 (2012): 81-227.]

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

Good splits will produce children with better predictive power
Equivalently, good splits will produce purer nodes (i.e. nodes with
concentrated distribution on their classes)

Adapted from: Criminisi et al, Decision Forests, 2012
15

Algorithm

Entropy of a Node

We can evaluate the predictive power of a node through the entropy over
classes

H[Y] = −
K∑

k=1
P (Y = k) log2 P (Y = k)

Given data Dj at node j, we can evaluate this entropy based on the
empirical entropy of the training data at that node

Hj = −
K∑

k=1
p̂j,k log2 p̂j,k

This is effectively the entropy of the predictive model if this node was
turned into a leaf
Purer nodes will have lower entropy

16

Algorithm

What makes a good split?What Makes a Good Split (for Classification)?

[Adapted from: Criminisi, Antonio, Jamie Shotton, and Ender Konukoglu. "Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and semi-supervised

learning." Foundations and Trends® in Computer Graphics and Vision 7.2–3 (2012): 81-227.]

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

Entropy = 1

Entropy = 2

Entropy = 1

Entropy = 1.49 Entropy = 1.46

Adapted from: Criminisi et al, Decision Forests, 2012
17

Algorithm

Information Gain

A split criterion is a way to measure how good a hypothetical split will be
We can use it to decide between possible splits when training a tree
One common split criterion is to use node entropy to calculate the
information gain of a split
The information gain of a split is the reduction in entropy in the predictive
distribution from adding the split, where we assume that new inputs take
each branch in proportion to the number of training samples that follow
the branch
Using nj to represent the number of training samples in node j, we have

InfoGain = Hj −
∑

c∈Children(j)

nc

nj
Hc

where we note that nj =
∑

c∈Children(j) nc

Gaining information reduces uncertainty in our predictions

18

Algorithm

What makes a good split?What Makes a Good Split (for Classification)?

[Adapted from: Criminisi, Antonio, Jamie Shotton, and Ender Konukoglu. "Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and semi-supervised

learning." Foundations and Trends® in Computer Graphics and Vision 7.2–3 (2012): 81-227.]

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

Entropy = 1

Entropy = 2

Entropy = 1

Entropy = 1.49 Entropy = 1.46

Information Gain = 2 - 0.52*1.49 - 0.48*1.46

Information Gain = 2 - 0.5*1 - 0.5*1

= 0.52

= 1

52% Data 48% Data

50% Data 50% Data

Adapted from: Criminisi et al, Decision Forests, 2012
19

Algorithm

Other Split Criteria

Information gain is not the only commonly used split criterion
Other approaches use a different measure of uncertainty to entropy,
before looking in the gain in that uncertainty metric in an analogous
manner to information gain
In general, we thus have that the gain for a hypothetical split node of j
under uncertainty metric B(·) is

Gain = B(Dj)− 1
nj

∑
c∈Children(j)

ncB(Dc)

Note that when we are choosing a split, B(Dj) is fixed, but different splits
will give different partitions in the children and thus different gains

Any split that partitions the data in same way has the same gain

B(Dj) effectively represents how bad node j is: splits with high gains
produce children with low uncertainties

20

Algorithm

Uncertainty Metrics

Possible choices for B(·) include (remember p̂j,k is the empirical
probability of class of k for node j)

Entropy (measured in bits):

B(Dj) = −
K∑

k=1

p̂j,k log2 p̂j,k

Gini Impurity (sometimes called Gini index):

B(Dj) = 1−
K∑

k=1

p̂2
j,k

Misclassification error (rarely used in practice):

B(Dj) = 1− max
k∈{1,...,K}

p̂j,k

C4.5 Tree algorithm: Classification uses entropy to measure uncertainty.
CART (class. and regression tree) algorithm: Classification uses Gini.

21

Algorithm

Different measures of uncertainty

Different uncertainty metrics for single split of binary classification function as
proportion of points p of the first class:

22

Algorithm

Why misclassification error is bad uncertainty metricWhat Makes a Good Split (for Classification)?

[Adapted from: Criminisi, Antonio, Jamie Shotton, and Ender Konukoglu. "Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and semi-supervised

learning." Foundations and Trends® in Computer Graphics and Vision 7.2–3 (2012): 81-227.]

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

Misclassification error gives the same gain of 0.25 to both these splits

Adapted from: Criminisi et al, Decision Forests, 2012
23

Algorithm

Splitting a Node: Exhaustive Search

Though some alternatives exist, most training approaches only split
based on a single feature (i.e. our splits are “axis-aligned”)
The standard approach is to perform exhaustive search over the set of
possible splits and pick the one with the highest gain
For categorical features, we can either create a new child for each
possible realization of the variable, or group realizations together to
reduce the number of children (e.g. to create a binary split)
For numerical features, we consider binary splits placed halfway between
consecutive feature values. This ensures the number of allowed splits is
finite.
From a predictive perspective, binary splits are always best, but using
larger numbers of children can make the tree more user–friendly

Note that any tree with multi-way splits can be reformulated into a binary tree
by repeatedly splitting on the same variable

24

Algorithm

-2 0 2 4

-2

-1

0

1

2

InfoGain
= 0.07

-2 0 2 4

-2

-1

0

1

2

InfoGain
= 0.68

-2 0 2 4

-2

-1

0

1

2

InfoGain
= 0.95

-2 0 2 4

-2

-1

0

1

2

25

Algorithm

-2 0 2 4

-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

G
ai
n

0 0.2 0.4 0.6 0.8 1
Gain

0 0.2 0.4 0.6 0.8 1
Gain

26

Algorithm

Recursively Repeat Process for New Nodes
Once we have split a node, we simply call the same tree training algorithm on
each of the new child nodes, leading to a recursive, self-similar training
scheme

-2 0 2 4

-2

-1

0

1

2

-2 0 2 4

-2

-1

0

1

2

-2 0 2 4

-2

-1

0

1

2

-2 0 2 4

-2

-1

0

1

2

-2 0 2 4

-2

-1

0

1

2

Left Child Right Child

27

Algorithm

Tree Training Algorithm Recap

Algorithm 2 TRAINTREE (Training Data D)
1: if any stopping criteria are met then
2: return LEAFNODE(D)
3: else
4: Search over possible splits and chose the best one
5: Separate D into newly created child nodes, giving D1, . . . , DC

6: for c = 1 : C do
7: child-sub-treec ← TRAINTREE(Dc)
8: end for
9: return Subtree with current node as root, chosen split, and child sub-

trees
10: end if

28

Algorithm

Example: A tree model for deciding where to eat

Decide whether to wait for a table at a restaurant, based on the following
attributes (Example from Russell and Norvig, AIMA)

Alternate: is there an alternative restaurant nearby?
Bar: is there a comfortable bar area to wait in?
Fri/Sat: is today Friday or Saturday?
Hungry: are we hungry?
Patrons: number of people in the restaurant (None, Some, Full)
Price: price range ($, $$, $$$)
Raining: is it raining outside?
Reservation: have we made a reservation?
Type: kind of restaurant (French, Italian, Thai, Burger)
Wait Estimate: estimated waiting time (0-10, 10-30, 30-60, >60)

29

Algorithm

Example: A tree model for deciding where to eat

Choosing a restaurant
(Example from Russell & Norvig, AIMA)

30

Algorithm

Start with root node containing all data

Which attribute to split?

!
!
!
!
!
!
Patron vs. Type?!

By choosing Patron, we end up with a partition (3 branches) with smaller entropy, ie,
smaller uncertainty (0.45 bit)!

By choosing Type, we end up with uncertainty of 1 bit.!

Thus, we choose Patron over Type.!

31

Algorithm

Uncertainty if we go with “Patron”

For “None” branch!

!

For “Some” branch!

!

For “Full” branch!

!

For choosing “Patrons”!

weighted average of each branch: this quantity is called conditional entropy!

!

�
✓

0

0 + 2
log

0

0 + 2
+

2

0 + 2
log

2

0 + 2

◆
= 0

�
✓

4

4 + 0
log

4

4 + 0
+

4

4 + 0
log

4

4 + 0

◆
= 0

2

12
⇤ 0 +

4

12
⇤ 0 +

6

12
⇤ 0.9 = 0.45

�
✓

2

2 + 4
log

2

2 + 4
+

4

2 + 4
log

4

2 + 4

◆
⇡ 0.9

32

Algorithm

Conditional entropy for Type

For “French” branch!

!

For “Italian” branch!

!

For “Thai” and “Burger” branches!

!

For choosing “Type”!

weighted average of each branch:!

!

�
✓

1

1 + 1
log

1

1 + 1
+

1

1 + 1
log

1

1 + 1

◆
= 1

�
✓

1

1 + 1
log

1

1 + 1
+

1

1 + 1
log

1

1 + 1

◆
= 1

�
✓

2

2 + 2
log

2

2 + 2
+

2

2 + 2
log

2

2 + 2

◆
= 1

2

12
⇤ 1 +

2

12
⇤ 1 +

4

12
⇤ 1 +

4

12
⇤ 1 = 1

33

Algorithm

Do we split on “Non” or “Some”?

!

No, we do not!
The decision is deterministic, as seen from the training data

34

Algorithm

next split?
We will look only at the 6 instances with

Patrons == Full

35

Algorithm

Greedily, we build

36

Algorithm

An Algorithm for Classification Trees
Assume numerical features for simplicity (see Section 9.2.4 in ESL for
categorical).

1 Start with root node with all data R1 = X = Rp.
2 For each feature m = 1, . . . , p, for each value v ∈ R that we can split on:

1 Split data set:

I< = {i : x
(m)
i < v} I> = {i : x

(m)
i ≥ v}

2 Estimate class probabilities for each hypothetical child node:

p̂< =

∑
i∈I<

yi

|I<|
p̂> =

∑
i∈I>

yi

|I>|

3 Compute the gain of the proposed split, e.g., using entropy, (note we can
ignore the constant term)

Gain = constant−
(

|I<|
|I<|+ |I>|

B(p̂<) + |I>|
|I<|+ |I>|

B(p̂>)
)

3 Choose split, i.e., feature m and value v, with biggest gain
4 Recurse on both children, with datasets (xi, yi)i∈I<

and (xi, yi)i∈I>
.

37

Algorithm

Computational Considerations

Numerical Features
We could split on any feature, with any threshold
However, for a given feature, the only split points we need to consider are
the the n values in the training data for this feature.
If we sort each feature by these n values, we can quickly compute our
impurity metric of interest (cross entropy or others), skipping values
where labels are unchanged.

This takes O(p n log n) time (sorting n elements takes O(n log n) steps).

Categorical Features
Assuming q distinct categories, there are 2q−1 − 1 possible binary
partitions we can consider.
If this becomes prohibitively large, we can replace the exhaustive search
with drawing a large number of sample partitions and choosing the best
one

38

Algorithm

Regression Trees
Regression trees are almost exactly the same as classification trees. The
only differences are

1 They have different local leaf models based on predicting a continuous
output y ∈ IR

2 These use different split criteria
The most common choice of predictive leaf model is just to have a
constant output prediction ŷj such that their overall predictive mapping
can be expressed in the form

f̂(x) =
L∑

j=1
ŷj · II(x ∈ Rj)

Using the squared loss, the optimal parameters are the sample means:

ŷj = ȳj ,
1
nj

∑
i∈Dj

yi =
∑n

i=1 yi · II(xi ∈ Rj)∑n
i=1 II(xi ∈ Rj)

Other losses, such as the L1 loss (producing the median), are also viable
Some algorithms make use of more complicated local leaf models, such
as a linear regression or even a Gaussian process

39

Algorithm

Split Criteria for Regression Trees

Regression tree split criteria are based on reducing a loss metric in the
same manner as for classification:

Gain = B(Dj)− 1
nj

∑
c∈Children(j)

ncB(Dc)

The difference is that B(·) now represents an empirical error

40

Algorithm

Split Criteria for Regression Trees (2)

The most common choice for B(·) is the empirical mean squared error

Bmse(Dj) = 1
nj

∑
i∈Dj

(yi − f̂j(xi))2

where f̂j(x) is the predictive model that would be employed if the node
were a leaf.
For the common choice of a constant predictive model, we have

f̂j(x) = ȳj = 1
nj

∑
i∈Dj

yi

where we note this is independent of the x
Combing these choices, gives the following gain

Gain = constant− 1
nj

∑
c∈Children(j)

∑
i∈Dc

(yi − ȳc)2

41

Algorithm

Example of Regression Trees

42

Algorithm

Example of Regression Trees

43

Algorithm

Example of Regression Trees

44

Algorithm

Regularization

We need to be careful to appropriately regularize the tree, e.g. by
introducing an appropriate maximum tree depth as a stopping criterion.
If the tree is too deep, we can overfit, if the tree is too shallow, we underfit
Max depth is a hyper-parameter that should be tuned by the data.
Can also have other early stopping criteria such as not splitting if the
current node exceeds a minimum number of datapoints at a node or a
minimum node error, or if a minimum level of gain is not achieved when
we try and split

45

Algorithm

Pruning

An alternative strategy is to create
an overly deep tree, and then
prune it
This involves collapsing down
some nodes to a single leaf node
Start at the leaves and step
upwards deciding whether to
collapse based on some metric
Produces smaller tree that is less
prone to overfitting
However, pruning can be
computational expensive

Pruning
❖ Collapsing down some

nodes to a single leaf
node

❖ Start at the leaves and
step upwards deciding
whether to collapse
based on some metric

❖ Smaller tree that is less
prone to overfitting

❖ Computational
expensive and unreliable

61

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

46

Algorithm

Regularized Objectives

In general, can also use a regularized objective, e.g.

Remp(T) + λsize(T)

Early stopping: grow the tree from scratch and stop once the criterion
objective starts to increase.
Pruning: first grow the full tree and prune nodes (starting at leaves), until
the objective starts to increase.
Pruning is preferred as the choice of tree is less sensitive to “wrong”
choices of split points and variables to split on in the first stages of tree
fitting.

Horizon issue where no single split is helpful, but multiple splits are (e.g.
XOR)

Can use cross-validation to determine optimal λ.

47

Algorithm

Summary of learning trees

Advantages
Easily interpretable by humans (as long as the tree is not too big)
Computationally efficient
Handle both numerical and categorical data
Can produce arbitrarily complex predictors given enough data
Do not require the data to be stored even though they are non-parametric
Building block for various ensemble methods (more on this next lecture)

Disadvantages
Rather crude predictive model compared with more advanced techniques
Training can suffer from horizon issues (think about an XOR problem)
Limited theoretical underpinning
Can be difficult to find right level of regularization (e.g. max depth)
Unstable: small changes in input data lead to very different trees

48

Algorithm

Example: Neurosurgery

49

Algorithm

Example: Neurosurgery

50

Algorithm

Example: Boston Housing Data

crim per capita crime rate by town
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
dis weighted distances to five Boston employment centres
lstat percentage of lower status of the population
... (6 more features)

Predict median house value.

51

Algorithm

Example: Boston Housing Data

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●●●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●
●●
●
●●

●
●

●●●●

●

●
●
●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●●● ●

●●
●
●
●●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●
●
●

●

●
●

●
●

●

●
●●●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

0.4 0.5 0.6 0.7 0.8

10
20

30
40

50

NOX

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

S

8.65

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●●●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●
●●
●
●●

●
●

●●●●

●

●
●
●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●●● ●

●●
●
●
●●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●
●
●

●

●
●

●
●

●

●
●●●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

0.4 0.5 0.6 0.7 0.8

10
20

30
40

50

NOX

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

S

8.42

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

S

8.84

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

S

8.32

Different possible splits (features and thresholds) result in different quality measures.

52

Algorithm

Example: Boston Housing Data

Overall, the best first split is on variable rm, average number of rooms per
dwelling.
Final tree contains predictions in leaf nodes.

|rm< 6.941

lstat>=14.4

crim>=6.992 dis>=1.385

rm< 6.543

rm< 7.437

crim>=7.393 nox>=0.6825

11.98 17.14

21.63 27.43
45.58

14.4 33.35 21.9 45.9

53

Algorithm

Example: Pima Indians Diabetes Dataset
Goal: predict whether or not a patient has diabetes.

> library(rpart)
> library(MASS)
> data(Pima.tr)
> rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> rp
n= 200

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 200 68 No (0.66000000 0.34000000)
2) glu< 123.5 109 15 No (0.86238532 0.13761468)
4) age< 28.5 74 4 No (0.94594595 0.05405405) *
5) age>=28.5 35 11 No (0.68571429 0.31428571)
10) glu< 90 9 0 No (1.00000000 0.00000000) *
11) glu>=90 26 11 No (0.57692308 0.42307692)
22) bp>=68 19 6 No (0.68421053 0.31578947) *
23) bp< 68 7 2 Yes (0.28571429 0.71428571) *
3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)
6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
12) glu< 166 27 6 No (0.77777778 0.22222222) *
13) glu>=166 8 2 Yes (0.25000000 0.75000000) *
7) ped>=0.3095 56 15 Yes (0.26785714 0.73214286)
14) bmi< 28.65 11 3 No (0.72727273 0.27272727) *
15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444) *

54

Algorithm

Example: Pima Indians Diabetes Dataset

> plot(rp,margin=0.1); text(rp,use.n=T)

|
glu< 123.5

age< 28.5

glu< 90

bp>=68

ped< 0.3095

glu< 166 bmi< 28.65

No
70/4

No
9/0

No
13/6

Yes
2/5

No
21/6

Yes
2/6 No

8/3
Yes
7/38

55

Algorithm

Two possible trees.

> rp1 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> plot(rp1);text(rp1)

> rp2 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8],
control=rpart.control(cp=0.05))
> plot(rp2);text(rp2)110 CHAPTER 8. TREE-BASED CLASSIFIERS

|
glu< 123.5

age< 28.5

glu< 90

bmi< 27.05

npreg< 6.5

bmi>=35.85

bmi< 32.85

ped< 0.3095

glu< 166

bp< 89.5 skin< 32

bmi< 28.65

age< 32 ped< 0.628

bp>=71

glu< 138

ped>=0.5495

No

No

No

No

No Yes

Yes

No Yes No Yes

No Yes

No

No Yes

Yes

Yes

Figure 8.4: Unpruned decision tree for the Pima Indians data set

Diabetes and Digestive and Kidney Diseases. The subjects were women who were at least 21 years old,
of Pima Indian heritage and living near Phoenix, Arizona. They were tested for diabetes according to
World Health Organisation criteria. The variables measured were the number of pregnancies (npreg),
the plasma glucose concentration in an oral glucose tolerance test (glu), the diastolic blood pressure
in mm Hg (bp), the triceps skin fold thickness in mm (skin), the body mass index (bbi), the diabetes
pedigree function (ped), and the age (age).

8.3 Pruning a tree

Growing the tree until no more decrease in impurity is possible often leads to an overfit to the training
data. We thus have to prune the tree. The most popular pruning approach is the one proposed by
Breiman et al. (1984a). The idea behind this approach is that too big trees yield an overfit. Thus
too big trees must be penalised. Denote with R(T) a measure of fit for the tree; this can be the
misclassification rate on the training set or the entropy of the partitioning. Instead of minimising the
fit criterion R(T) itself, we now minimise the penalised fitting criterion

R(T) + α · size(T),

where size(T) is the number of leafs and α controls the amount of penalisation. If we choose α = 0,
there will be no pruning; if we choose α = +∞ all nodes but the root node are removed. Breiman
et al. (1984a) showed that there is a nested sequence of subtrees of the fitted tree such that each is
optimal for a range of α. So all we have to do is to pick one of the trees of this sequence.

If we have a validation set at hand, we can pick the subtree yielding the lowest error rate in the
validation set. Otherwise one generally uses cross-validation to pick the optimal subtree. Figure 8.5
shows the error (relative to a tree with the root node only) for the different subtrees for the Pima

112 CHAPTER 8. TREE-BASED CLASSIFIERS

|
glu< 123.5

ped< 0.3095

bmi< 28.65

No

No

No Yes

Figure 8.6: Pruned decision tree for the Pima Indians data set.

56

	Examples
	Decision trees
	Algorithm

