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Visualisation and Dimensionality Reduction PCA and SVD

Summary: PCA

PCA

Find an orthogonal basis {v1, v2, . . . , vp} for the data space such that:
The first principal component (PC) v1 is the direction of greatest
variance of data.
The j-th PC vj is the direction orthogonal to v1, v2, . . . , vj−1 of greatest
variance, for j = 2, . . . , p.

Eigendecomposition of the sample covariance matrix
S = 1

n−1
∑n
i=1 xix

>
i .

S = V ΛV >.
Λ is a diagonal matrix with eigenvalues (variances along each principal
component) λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0
V is a p× p orthogonal matrix whose columns are the p eigenvectors of S,
i.e. the principal components v1, . . . , vp

Dimensionality reduction by projecting xi ∈ Rp onto first k principal
components:

zi =
[
v>1 xi, . . . , v

>
k xi

]> ∈ Rk.



Visualisation and Dimensionality Reduction PCA and SVD

Summary: PCA

S = 1
n− 1

n∑
i=1

xix
>
i = 1

n− 1X>X.

S is a real and symmetric matrix, so there exist p eigenvectors v1, . . . , vp
that are pairwise orthogonal and p associated eigenvalues λ1, . . . , λp
which satisfy the eigenvalue equation Svi = λivi. In particular, V is an
orthogonal matrix:

V V > = V >V = Ip.

S is a positive-semidefinite matrix, so the eigenvalues are
non-negative:

λi ≥ 0, ∀i.

Why is S symmetric? Why is S positive-semidefinite?
Reminder: A symmetric p× p matrix R is said to be positive-semidefinite if

∀a ∈ Rp, a>Ra ≥ 0.
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Singular Value Decomposition (SVD)

SVD

Any real-valued n× p matrix X can be written as X = UDV > where
U is an n× n orthogonal matrix: UU> = U>U = In

D is a n× p matrix with decreasing non-negative elements on the
diagonal (the singular values) and zero off-diagonal elements.
V is a p× p orthogonal matrix: V V > = V >V = Ip

SVD always exists, even for non-square matrices.
Fast and numerically stable algorithms for SVD are available in most
packages.The relevant R command is svd.
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SVD and PCA

Let X = UDV > be the SVD of the n× p data matrix X.
Note that

(n− 1)S = X>X = (UDV >)>(UDV >) = V D>U>UDV > = V D>DV >,

using orthogonality (U>U = In) of U .
The eigenvalues of S are thus the diagonal entries of Λ = 1

n−1D
>D.

We also have (using orthogonality V >V = Ip)

XX> = (UDV >)(UDV >)> = UDV >V D>U> = UDD>U>,

Gram matrix

B = XX>, Bij = x>i xj is called the Gram matrix of dataset X.
B and (n− 1)S = X>X have the same nonzero eigenvalues, equal to the
non-zero squared singular values of X.

Projection:
Z = XV = UDV >V = UD.

Can be obtain by eigendecomposition of B, less computation if p > n.
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Biplots

> biplot(Crabs.pca,scale=1)
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PCA plots show the data items (rows of X) in the space spanned by PCs.

Biplots allow us to visualize the original variables X(1), . . . , X(p)

(corresponding to columns of X) in the same plot.
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Biplots
Recall that X = [X(1), . . . , X(p)]> and X = UDV > is the SVD of the data
matrix.

The ’full’ PC projection of xi is the i-th row of UD:

zi = V >xi = D>U>i ,equivalently: XV = UD.

The j-th unit vector ej ∈ Rp points in the direction of the original variable
X(j). Its PC projection ηj is:

ηj = V >ej = V >j (the j-th row of V )

The projection of ej indicates the weighting each PC gives to the original
variable X(j).
Dot products between these projections give entries of the data matrix:

xij =
min{n,p}∑
k=1

UikDkkVjk = 〈D>U>i , V >j 〉 = 〈zi, ηj〉.

Biplots focus on the first two PCs and the quality depends on the
proportion of variance explained by the first two PCs.
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Iris Data

50 samples from each of the 3 species of iris:
setosa, versicolor, and virginica

Each measuring the length and widths of
both sepal and petals

Collected by E. Anderson (1935) and
analysed by R.A. Fisher (1936)
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Iris Data

> data(iris)
> iris[sample(150,20),]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
54 5.5 2.3 4.0 1.3 versicolor
33 5.2 4.1 1.5 0.1 setosa
30 4.7 3.2 1.6 0.2 setosa
73 6.3 2.5 4.9 1.5 versicolor
107 4.9 2.5 4.5 1.7 virginica
4 4.6 3.1 1.5 0.2 setosa
90 5.5 2.5 4.0 1.3 versicolor
83 5.8 2.7 3.9 1.2 versicolor
50 5.0 3.3 1.4 0.2 setosa
92 6.1 3.0 4.6 1.4 versicolor
128 6.1 3.0 4.9 1.8 virginica
57 6.3 3.3 4.7 1.6 versicolor
9 4.4 2.9 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
86 6.0 3.4 4.5 1.6 versicolor
66 6.7 3.1 4.4 1.4 versicolor
85 5.4 3.0 4.5 1.5 versicolor
147 6.3 2.5 5.0 1.9 virginica
8 5.0 3.4 1.5 0.2 setosa
41 5.0 3.5 1.3 0.3 setosa
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Iris data biplot

> iris.pca<-princomp(iris[,-5],cor=TRUE)
> biplot(iris.pca,scale=0)
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Biplots

There are other projections we can consider for biplots (assuming p < n
to simplify notation):

xij =
p∑
k=1

UikDkkVjk = 〈D>1:p,1:pU
>
i,1:p, V

>
j 〉 = 〈D1−α

1:p,1:pU
>
i,1:p, D

α
1:p,1:pV

>
j 〉.

where 0 ≤ α ≤ 1, i.e., we change representation to

z̃i = D1−α
1:p,1:pU

>
i,1:p, η̃j = Dα

1:p,1:pV
>
j

case α = 1:
Sample covariance of the projected points is:

Ĉov
(
Z̃
)

= 1
n− 1U

>
1:n,1:pU1:n,1:p = 1

n− 1Ip.

Projected points are uncorrelated and dimensions are equi-variance.
Sample covariance between X(i) and X(j) is:

Ê(X(i)X(j)) = 1
n− 1

(
V D>DV >)

i,j
= 1
n− 1 〈D1:p,1:pV

>
i , D1:p,1:pV

>
j 〉

The angle between the projected variables maps to their correlation.
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Iris Data biplot - scaled
> ?biplot
...
scale: The variables are scaled by lambda ^ scale and the observations
are scaled by lambda ^ (1-scale) where lambda are the singular values
as computed by princomp. (default=1)
...
> biplot(iris.pca,scale=1)
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Crabs Data biplots

> biplot(Crabs.pca,scale=0)
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> biplot(Crabs.pca,scale=1)
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US Arrests Data

This data set contains statistics, in arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. Also given is the
percent of the population living in urban areas.

pairs(USArrests)
usarrests.pca <- princomp(USArrests,cor=T)
plot(usarrests.pca)

pairs(predict(usarrests.pca))
biplot(usarrests.pca)
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US Arrests Data Pairs Plot

> pairs(USArrests)
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US Arrests Data Biplot

> biplot(usarrests.pca, scale=1)
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Visualisation and Dimensionality Reduction Multidimensional Scaling

Multidimensional Scaling

Suppose there are n points X in Rp, but we are only given the n× n matrix D
of inter-point distances.

Can we reconstruct X?



Visualisation and Dimensionality Reduction Multidimensional Scaling

Multidimensional Scaling

Rigid transformations (translations, rotations and reflections) do not change
inter-point distances so cannot recover X exactly. However X can be
recovered up to these transformations!

Let dij = ‖xi − xj‖2 be the distance between points xi and xj .

d2
ij = ‖xi − xj‖2

2

= (xi − xj)>(xi − xj)
= x>i xi + x>j xj − 2x>i xj

Let B = XX> be the n× n matrix of dot-products, bij = x>i xj . The above
shows that D can be computed from B.
Some algebraic exercise shows that B can be recovered from D if we
assume

∑n
i=1 xi = 0.
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Multidimensional Scaling

If we knew X, then SVD gives X = UDV >. As X has rank at most
r = min(n, p), we have at most r non-zero singular values in D and we
can assume U ∈ Rn×r, D ∈ Rr×r and V > ∈ Rr×p.
The eigendecomposition of B is then:

B = XX> = UD2U> = UΛU>.

This eigendecomposition can be obtained from B without knowing X!
Let x̃>i = UiΛ

1
2 ∈ Rr. If r < p, pad x̃i with 0s so that it has length p. Then,

x̃>i x̃j = UiΛU>j = bij = x>i xj

and we have found a set of vectors with dot-products given by B, as
desired.
The vectors x̃i differs from xi only via the orthogonal matrix V > (recall
that x>i = UiDV

> = x̃>i V
>) so are equivalent up to rotation and

reflections.
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US City Flight Distances

We present a table of flying mileages between 10 American cities, distances
calculated from our 2-dimensional world. Using D as the starting point, metric
MDS finds a configuration with the same distance matrix.

ATLA CHIG DENV HOUS LA MIAM NY SF SEAT DC
0 587 1212 701 1936 604 748 2139 2182 543
587 0 920 940 1745 1188 713 1858 1737 597
1212 920 0 879 831 1726 1631 949 1021 1494
701 940 879 0 1374 968 1420 1645 1891 1220
1936 1745 831 1374 0 2339 2451 347 959 2300
604 1188 1726 968 2339 0 1092 2594 2734 923
748 713 1631 1420 2451 1092 0 2571 2408 205
2139 1858 949 1645 347 2594 2571 0 678 2442
2182 1737 1021 1891 959 2734 2408 678 0 2329
543 597 1494 1220 2300 923 205 2442 2329 0
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US City Flight Distances

library(MASS)

us <- read.csv("http://www.stats.ox.ac.uk/~palamara/teaching/SML19/uscities.csv")

## use classical MDS to find lower dimensional views of the data
## recover X in 2 dimensions

us.classical <- cmdscale(d=us,k=2)
plot(us.classical)
text(us.classical,labels=names(us))
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US City Flight Distances
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Lower-dimensional Reconstructions

In classical MDS derivation, we used all eigenvalues in the
eigendecomposition of B to reconstruct

x̃i = UiΛ
1
2 .

We can use only the largest k < min(n, p) eigenvalues and eigenvectors in
the reconstruction, giving the ‘best’ k-dimensional view of the data.

This is analogous to PCA, where only the largest eigenvalues of X>X are
used, and the smallest ones effectively suppressed.

Indeed, PCA and classical MDS are duals and yield effectively the same
result.
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Crabs Data

library(MASS)
crabs$spsex=paste(crabs$sp,crabs$sex,sep="")
varnames<-c(’FL’,’RW’,’CL’,’CW’,’BD’)
Crabs <- crabs[,varnames]
Crabs.class <- factor(crabs$spsex)
crabsmds <- cmdscale(d= dist(Crabs),k=2)
plot(crabsmds, pch=20, cex=2,col=unclass(Crabs.class))
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Crabs Data
Compare with previous PCA analysis.
Classical MDS solution corresponds to the first 2 PCs.
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Varieties of MDS

Generally, MDS is a class of dimensionality reduction techniques which
represents data points x1, . . . , xn ∈ Rp in a lower-dimensional space
z1, . . . , zn ∈ Rk which tries to preserve inter-point (dis)similarities.

It requires only the matrix D of pairwise dissimilarities dij = d(xi, xj). For
example, we can use Euclidean distance dij = ‖xi − xj‖2, but other
dissimilarities are possible.
MDS finds representations z1, . . . , zn ∈ Rk such that

‖zi − zj‖2 ≈ d(xi, xj) = dij ,

and differences in dissimilarities are measured by the appropriate loss
∆(dij , ‖zi − zj‖2).
Goal: Find Z which minimizes the stress function

S(Z) =
∑
i6=j

∆(dij , ‖zi − zj‖2).
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Varieties of MDS
Choices of (dis)similarities and stress functions S(Z) lead to different
algorithms.

Classical/Torgerson: preserves inner products instead - strain function
(cmdscale)

S(Z) =
∑
i 6=j

(bij − 〈zi − z̄, zj − z̄〉)2

Metric Shephard-Kruskal: preserves distances w.r.t. squared stress

S(Z) =
∑
i6=j

(dij − ‖zi − zj‖2)2

Sammon: preserves shorter distances more (sammon)

S(Z) =
∑
i 6=j

(dij − ‖zi − zj‖2)2

dij

Non-Metric Shephard-Kruskal: ignores actual distance values, only
preserves ranks (isoMDS)

S(Z) = min
g increasing

∑
i6=j

(g(dij)− ‖zi − zj‖2)2∑
i 6=j
‖zi − zj‖2

2
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Example: Language data

Presence or absence of 2867 homologous traits in 87 Indo-European
languages.

> X<-read.table("http://www.stats.ox.ac.uk/~palamara/teaching/SML19/cognate.txt")
> X[1:15,1:16]

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16
Irish_A 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Irish_B 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Welsh_N 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Welsh_C 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Breton_List 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Breton_SE 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Breton_ST 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Romanian_List 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vlach 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Italian 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ladin 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Provencal 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
French 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Walloon 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
French_Creole_C 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Example: Language data
Using MDS with non-metric (Sammon) scaling.

MDS (i.e. cmdscale) which minimizes (d2
ij − d̃2

ij)
2. Sammon thereby puts

more weight on reproducing the separation of points which are close by
forcing them apart. Projection by MDS(Jaccard/sammon) with cluster dis-
covery by k-means (Jaccard): There is an obvious east to west (top-left to
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bottom-right) separation of languages in the MDS and the clusters in the
MDS grouping agree with the clusters discovered by agglomerative clus-
tering and k-means. The two clustering methods group languages slightly
differently with k-means splitting the Germanic languages.

## (alternative/MDS) make a field to display the clusters

## use MDS - sammon does this nicely

di.sam <- sammon(D,magic=0.20000002,niter=1000,tol=1e-8)

eqscplot(di.sam$points,pch=km$cluster,col=km$cluster)

text(di.sam$points,labels=row.names(X),pos=4,col=km$cluster)

5
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Nonlinear Dimensionality Reduction

Two aims of different varieties of MDS:
To visualize the (dis)similarities among items in a dataset, where these
(dis)disimilarities may not have Euclidean geometric interpretations.
To perform nonlinear dimensionality reduction.

Many high-dimensional datasets exhibit low-dimensional structure (“live on a
low-dimensional menifold”).
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Isomap

Isomap is a non-linear dimensional reduction technique based on classical
MDS. Differs from other MDSs as it uses estimates of geodesic distances
between the data points.

converts distances to inner products (17 ),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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Tenenbaum et al. (2000)

http://isomap.stanford.edu/
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Isomap

Isomap

Calculate Euclidean distances Dij for i, j = 1, . . . , n between all data
points.
Form a graph G with n samples as nodes, and edges between the
respective K nearest neighbours (K-Isomap) or between i and j if
Dij < ε (ε-Isomap).
For i, j linked by an edge, set DG

ij = Dij . Otherwise, set DG
ij to be the

shortest-path distance between i and j in G.
Run classical MDS using distances DG

ij .

converts distances to inner products (17 ),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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R function: isomap{vegan}.
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Faces

tion to geodesic distance. For faraway points,
geodesic distance can be approximated by
adding up a sequence of “short hops” be-
tween neighboring points. These approxima-
tions are computed efficiently by finding
shortest paths in a graph with edges connect-
ing neighboring data points.

The complete isometric feature mapping,
or Isomap, algorithm has three steps, which
are detailed in Table 1. The first step deter-
mines which points are neighbors on the
manifold M, based on the distances dX (i, j)
between pairs of points i, j in the input space

X. Two simple methods are to connect each
point to all points within some fixed radius !,
or to all of its K nearest neighbors (15). These
neighborhood relations are represented as a
weighted graph G over the data points, with
edges of weight dX(i, j) between neighboring
points (Fig. 3B).

In its second step, Isomap estimates the
geodesic distances dM (i, j) between all pairs
of points on the manifold M by computing
their shortest path distances dG(i, j) in the
graph G. One simple algorithm (16 ) for find-
ing shortest paths is given in Table 1.

The final step applies classical MDS to
the matrix of graph distances DG " {dG(i, j)},
constructing an embedding of the data in a
d-dimensional Euclidean space Y that best
preserves the manifold’s estimated intrinsic
geometry (Fig. 3C). The coordinate vectors yi

for points in Y are chosen to minimize the
cost function

E ! !#$DG% " #$DY%!L2 (1)

where DY denotes the matrix of Euclidean
distances {dY(i, j) " !yi & yj!} and !A!L2

the L2 matrix norm '(i, j Ai j
2 . The # operator

Fig. 1. (A) A canonical dimensionality reduction
problem from visual perception. The input consists
of a sequence of 4096-dimensional vectors, rep-
resenting the brightness values of 64 pixel by 64
pixel images of a face rendered with different
poses and lighting directions. Applied to N " 698
raw images, Isomap (K" 6) learns a three-dimen-
sional embedding of the data’s intrinsic geometric
structure. A two-dimensional projection is shown,
with a sample of the original input images (red
circles) superimposed on all the data points (blue)
and horizontal sliders (under the images) repre-
senting the third dimension. Each coordinate axis
of the embedding correlates highly with one de-
gree of freedom underlying the original data: left-
right pose (x axis, R " 0.99), up-down pose ( y
axis, R " 0.90), and lighting direction (slider posi-
tion, R " 0.92). The input-space distances dX(i, j )
given to Isomap were Euclidean distances be-
tween the 4096-dimensional image vectors. (B)
Isomap applied to N " 1000 handwritten “2”s
from the MNIST database (40). The two most
significant dimensions in the Isomap embedding,
shown here, articulate the major features of the
“2”: bottom loop (x axis) and top arch ( y axis).
Input-space distances dX(i, j ) were measured by
tangent distance, a metric designed to capture the
invariances relevant in handwriting recognition
(41). Here we used !-Isomap (with ! " 4.2) be-
cause we did not expect a constant dimensionality
to hold over the whole data set; consistent with
this, Isomap finds several tendrils projecting from
the higher dimensional mass of data and repre-
senting successive exaggerations of an extra
stroke or ornament in the digit.
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Handwritten Characters

tion to geodesic distance. For faraway points,
geodesic distance can be approximated by
adding up a sequence of “short hops” be-
tween neighboring points. These approxima-
tions are computed efficiently by finding
shortest paths in a graph with edges connect-
ing neighboring data points.

The complete isometric feature mapping,
or Isomap, algorithm has three steps, which
are detailed in Table 1. The first step deter-
mines which points are neighbors on the
manifold M, based on the distances dX (i, j)
between pairs of points i, j in the input space

X. Two simple methods are to connect each
point to all points within some fixed radius !,
or to all of its K nearest neighbors (15). These
neighborhood relations are represented as a
weighted graph G over the data points, with
edges of weight dX(i, j) between neighboring
points (Fig. 3B).

In its second step, Isomap estimates the
geodesic distances dM (i, j) between all pairs
of points on the manifold M by computing
their shortest path distances dG(i, j) in the
graph G. One simple algorithm (16 ) for find-
ing shortest paths is given in Table 1.

The final step applies classical MDS to
the matrix of graph distances DG " {dG(i, j)},
constructing an embedding of the data in a
d-dimensional Euclidean space Y that best
preserves the manifold’s estimated intrinsic
geometry (Fig. 3C). The coordinate vectors yi

for points in Y are chosen to minimize the
cost function

E ! !#$DG% " #$DY%!L2 (1)

where DY denotes the matrix of Euclidean
distances {dY(i, j) " !yi & yj!} and !A!L2

the L2 matrix norm '(i, j Ai j
2 . The # operator

Fig. 1. (A) A canonical dimensionality reduction
problem from visual perception. The input consists
of a sequence of 4096-dimensional vectors, rep-
resenting the brightness values of 64 pixel by 64
pixel images of a face rendered with different
poses and lighting directions. Applied to N " 698
raw images, Isomap (K" 6) learns a three-dimen-
sional embedding of the data’s intrinsic geometric
structure. A two-dimensional projection is shown,
with a sample of the original input images (red
circles) superimposed on all the data points (blue)
and horizontal sliders (under the images) repre-
senting the third dimension. Each coordinate axis
of the embedding correlates highly with one de-
gree of freedom underlying the original data: left-
right pose (x axis, R " 0.99), up-down pose ( y
axis, R " 0.90), and lighting direction (slider posi-
tion, R " 0.92). The input-space distances dX(i, j )
given to Isomap were Euclidean distances be-
tween the 4096-dimensional image vectors. (B)
Isomap applied to N " 1000 handwritten “2”s
from the MNIST database (40). The two most
significant dimensions in the Isomap embedding,
shown here, articulate the major features of the
“2”: bottom loop (x axis) and top arch ( y axis).
Input-space distances dX(i, j ) were measured by
tangent distance, a metric designed to capture the
invariances relevant in handwriting recognition
(41). Here we used !-Isomap (with ! " 4.2) be-
cause we did not expect a constant dimensionality
to hold over the whole data set; consistent with
this, Isomap finds several tendrils projecting from
the higher dimensional mass of data and repre-
senting successive exaggerations of an extra
stroke or ornament in the digit.
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