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2 GEOFF NICHOLLS

1. Course

The course develops the theory of statistical methods, and introduces students
to the analysis of data using a statistical package. The main topics of the MT14
course are: Practical aspects of normal linear models, Logistic regression and gen-
eralized linear models.

1.1. Website. Information about the course, classes and assessment etc are posted
at

http://www.stats.ox.ac.uk/~nicholls/sb1a/

In particular Lecture notes, problem sheets, etc. are linked from that page.
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2. Linear Regression

2.1. Normal linear models. Does y get bigger when there is more x? Normal
linear models are attractive because they are simple, and in some respects easy
to interpret. If, for a given observation process, they happen to give a correct or
near-correct description of the distribution of the response y, and its dependence
on predictive factors x, then they are hard to beat.

We choose to model a randomly variable response Y = y as a linear function of
explanatory variables x1, x2, ..., xp. At the ith observation, we set the explanatory
variables to values xi = (xi,1, xi,2, ..., xi,p) (with xi a row vector), and measure a
response Yi = yi. Under a normal linear model, the expected response is given
as a linear combination of the explanatory variables, weighted by parameters β =
(β1, β2, ..., βp)

T ,

yi =

p
∑

j=1

βjxi,j + ǫi,

with ǫi ∼ N(0, σ2) iid normal errors for i = 1, 2, ..., n. If ǫ = (ǫ1, ǫ2, ..., ǫn)T then
yi = xiβ + ǫi. If y = (y1, y2, ..., yn)T , and X is the n × p design matrix with rows
xi, then our linear model has matrix form

y = Xβ + ǫ.

We will write Xj , j = 1, 2, ..., p for the columns of X = (X1, X2, ..., Xp). We will
use y and ǫ to denote both a column vector of responses, as above, and a single
generic realization of the scalar response Y = y etc. For example if we write down
a model in terms of scalars y and ǫ,

y = α + γ1x1 + ... + γmxm + ǫ

omitting the i = 1, 2, ..., n subscript, we have in mind y = Xβ + ǫ (now vectors)
with β1 = α and βi = γi+1 and p = m + 1. In this example, X1 = 1n,1 that is, the
first column if X is a column of ones and corresponds to the explanatory variable
for the intercept parameter α.

The nomenclature assumes that we set the values of the explanatory variables
and measure the response. When we choose the xi, i = 1, 2, ..., n we are designing
the experiment. We will see that not all designs are equally good. The subject of
experimental design is one we will just touch on.

From time to time, we will assume that the columns of X are linearly independent
vectors, that is, the explanatory variables are not linearly dependent. If they are,
we can throw out linearly dependent columns till we have a linearly independent
set; the discarded columns tell us nothing new about the measurement context.
This issue comes up, for example, in Section ??. We are, as a consequence, often
assuming p ≤ n, that is, we have more measurements than parameters.

The number one problem for interpreting linear models arises from correlation
between explanatory variables. You can think of this as a kind of weak linear
dependence between variables, and groups of variables.

Example 2.1. The dataset cig contains measurements of the carbon-monoxide
(variable CO), tar and nicotine content and tobacco weight for n = 25 cigarettes.
The data are plotted in Figure 1. In the normal linear model CO ∼ 1+ Nicotine+
Tar+Weight the response is CO and all the other variables (including intercept) are
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Figure 1. Cigarette CO data.

explanatory. This notation (which comes from R) means we are fitting the model

y = β1 + x2β2 + x3β3 + x4β4 + ǫ

with y = CO output for one cigarette, x1 = 1 and x2, x3 and x4 respectively the
measured nicotine and tar content and weight of the cigarette.

> loc<-’http://www.stats.ox.ac.uk/~nicholls/bs1a/data/cigarettes.txt’

> cig<-read.table(loc,header=T) #load the data from a file

> names(cig) #inspect the data

[1] "Brand" "Tar" "Nicotine" "Weight" "CO"

> dim(cig) #number of observations by number of variables

[1] 25 5

> head(cig)

Brand Tar Nicotine Weight CO

1 Alpine 14.1 0.86 0.9853 13.6

2 Benson&Hedges 16.0 1.06 1.0938 16.6

3 BullDurham 29.8 2.03 1.1650 23.5

4 CamelLights 8.0 0.67 0.9280 10.2

5 Carlton 4.1 0.40 0.9462 5.4

6 Chesterfield 15.0 1.04 0.8885 15.0

> pairs(cig[,c("Tar","Nicotine","Weight","CO")])
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The following partial R-output gives the fitted MLE parameter values for this
model.

> cig.lm<-lm(CO~Nicotine+Tar+Weight,data=cig) #ignoring brand for now

> summary(cig.lm)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.2022 3.4618 0.925 0.365464

Nicotine -2.6317 3.9006 -0.675 0.507234

Tar 0.9626 0.2422 3.974 0.000692 ***

Weight -0.1305 3.8853 -0.034 0.973527

...

The columns give estimates (β̂), standard errors (ie estimates of var(β̂)), t-values
for the test that the parameter is zero (Estimate/Std. Error) and p values for those
test statistics. Notice that the parameter for the variable Nicotine is negative.
Look at the pairs plot. How does this make sense? The problem is that tar and
nicotine are correlated. Tar is explaining the bulk of the variation in CO making
the contribution from nicotine hard to interpret. Which variables are explanatory?
Is there a minimal set? My guess would be that Tar gives rise to CO and Tar
separately predicts Nicotine so Nicotine is only indirectly linked to CO. We will
return to this sort of problem later in the course.

For the linear model theory to go through, the response must be a linear function
of the parameters β. It need not be a linear function of the explanatory variables.
Also, we may find that some function of the response is a linear function of the
explanatory variables.

Example 2.2. Consider the trees data. What variables, and what functions of
those variables are important on physical grounds? A lattice plot of the logged
trees data is shown in Figure 2.

> data(trees) #bring the data into the workspace

> names(trees) #what are the variable names?

[1] "Girth" "Height" "Volume"

> dim(trees) #n=31 observations

[1] 31 3

> pairs(log(trees),main=’logged trees data’) #Make the lattice plot

If v is the volume, and h and g are the height and girth, a natural model on physical
grounds would be

v = ηh1+β2g2+β3γ

with η a fixed constant and γ varying randomly about one. The idea of using a
multiplying error γ here is that large volume trees have a higher volume variance
than lower volume trees. We will investigate the linear model

y = β1 + β2x2 + β3x3 + ǫ

with y = log(v/hg2), β1 = log(η), x2 = log(h), x3 = log(g) and ǫ = log(γ). In
the lattice plot of Figure 2, the logged data has little curvature, skew or uneven
distribution of X-values (bunching by height or girth) so a linear model seems
acceptable.
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Figure 2. Lattice plot of the of the logged response (volume)
and the logged explanatory variables (girth and height) for the 31
observations in the trees data.

The model we are fitting has n = 31 observations and p = 3 parameters. Fitting
the model we obtain

> trees.lm1<-lm(log(Volume/(Height*Girth^2))~1+log(Height)+log(Girth),data=trees)

> names(trees.lm1)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

> summary(trees.lm1)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.63162 0.79979 -8.292 5.06e-09 ***

log(Height) 0.11712 0.20444 0.573 0.571

log(Girth) -0.01735 0.07501 -0.231 0.819

...

Reading off the estimated parameters, β = (log(η), β2, β3), so η̂ = exp(−6.6) etc,
we arrive at the model

v = exp(−6.6)h1.12g1.98γ,

with log(γ) ∼ N(0, 0.082).
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2.2. Estimators. Given a normal linear model with data y and an n × p design
X , the log-likelihood for β is

ℓ(β, σ2; y) = −n

2
log(σ2)− 1

2σ2

n
∑

i=1

(yi − xiβ)2.

Let RSS(β) = (y−Xβ)T (y−Xβ) denote the residual sum of squares. The maximum

likelihood estimator β̂ for β minimises the RSS, for any fixed σ. Denote by

col(X) = {z ∈ Rn : z = Xβ, β ∈ Rp}
the column span of X . We suppose to begin with that X is rank p, so col(X) is a

p-dimensional linear subspace of Rn. Since β̂ minimises the RSS, Xβ̂ is that point

ŷ in col(X) lying closest to y. The point ŷ = Xβ̂ therefore lies at the orthogonal
projection of y into col(X). Since y − ŷ is orthogonal to all vectors in col(X), we
have the p normal equations

XT (y −Xβ̂) = 0

which fix the values of the p parameters β. Now if X has p linearly independent
columns then the p×p matrix XT X is rank p and invertible. It follows that

β̂ = (XT X)−1XT y

gives the MLE in terms of the design matrix and observations. This is also the
least-squares estimator for β, since it minimizes the RSS.

We will shortly derive an unbiased estimator for the error variance σ2. However,
recall that when we make likelihood ratio tests we substitute parameter MLEs into
the likelihood, and it is for this reason that we will later need the MLE for σ2 and

the value of the maximized log-likelihood. Since β̂ is the MLE for all σ2, the MLE
σ̂2
MLE for the error variance maximises

ℓ(β̂, σ2; y) = −n

2
log(σ2)− 1

2σ2
(y −Xβ̂)T (y −Xβ̂)

so the MLE is

σ̂2
MLE =

RSS

n
.

This is a biased estimator (RSS means RSS(β̂) from here on). The value of the
log-likelihood at the joint MLE, is

ℓ(β̂, σ2
MLE; y) = −n

2
log(RSS/n)− n/2

since the two factors of (y −Xβ̂)T (y −Xβ̂) cancel.

2.3. Properties of Estimators. Let ŷ = Xβ̂ give the estimated response. Define
the n× n hat matrix H

H = X(XT X)−1XT

so that ŷ = Hy. The hat matrix is a projection operator, projecting y into the
column space of X , so H = HH and H is symmetric. Define the vector of residu-
als, e = y − ŷ. The residual sum of squares, is the squared norm of the residuals,

RSS(β̂) = eT e. Under the normal linear model, the residuals e and the estimated
response ŷ are actually independent. We begin by showing that they are uncorre-
lated. [END L1 2010]

Exercise : Show that eT e + ŷT ŷ = yT y (y, ŷ and e form a right-angle triangle).
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Exercise : Show that H has p eigenvalues equal one and n− p equal zero.

For generic random vectors U = (U1, ..., Up)
T and W = (W1, ..., Wn)T with

means µU = E(U) and µW = E(W ) denote by

cov(U, W ) = E((U − µU )(W − µW )T )

the p × n covariance matrix with entries cov(U, W )i,j = cov(Ui, Wj). Notice that
(U − µU )(W − µW )T is an outer product.

Exercise Let C, C′ be constant (ie non-random) p, n-component vectors. Show
that cov(U + C, W + C′) = cov(U, W ).

The variance matrix

var(U) = E((U − µU )(U − µU )T )

is a symmetric p × p matrix with entries var(U)i,j = var(Ui, Uj). The variance
matrix of Y is var(Y ) = var(Xβ + ǫ), Xβ is a constant and var(ǫ) = σ2In so
var(Y ) = σ2In.

Exercise Let L and M be matrices of suitable dimension. Show that cov(LU, MW ) =
Lcov(U, W )MT and var(LU) = Lvar(U)LT .

Under the normal linear model, the estimated responses ŷ and residuals e are
uncorrelated: cov(Ŷ , Y − Ŷ ) = cov(HY, (In −H)Y ) and the RHS there is

Hcov(Y, Y )(In −H)T = σ2In(H −HHT )

which is zero, that is, cov(Ŷ , Y − Ŷ ) = 0n,n where 0n,n is an n×n matrix of zeros.

In fact, as we will see, Ŷ and e are independent. This is sometimes asserted on
the basis that Ŷ and e are normal, with zero covariance, so they are independent.
Beware: this kind of argument works when the two quantities are jointly normal.
It is easy to see that Ŷ and e are not jointly normal (the covariance matrix for each
is singular). The conclusion is nevertheless correct in this case.

We next compute the distribution of our parameter estimate β̂. The MLE

β̂ = (XT X)−1XT Y is a linear combination of the normal random variables Y =
(Y1, ..., Yn). In general, if W ∼ N(µW , Σ), so that W is an n-component multi-
variate normal (MVN) random vector (r.v.) with positive definite n × n variance
matrix var(W ) = Σ, and L is a p×n matrix with p ≤ n linearly independent rows,
then the p-component r.v. LW ∼ N(LµW , LΣLT ). The conditions are there to
ensure LΣLT is positive definite, and hence invertible.

Exercise Show that E(β̂) = β and var(β̂) = σ2(XT X)−1, so that

β̂ ∼ N(β, σ2(XT X)−1).

Ans: This is the generic case with L = (XT X)−1XT and W = Y , so var(β̂) =

(XT X)−1XT var(Y )((XT X)−1XT )T , or var(β̂) = σ2(XT X)−1XT X(XT X)−1 which

is var(β̂) = σ2(XT X)−1. The result for the MVN distribution follows from the re-
sult for LW above.

Let us now show that e and Ŷ are independent. It follows that β̂ and RSS are

independent, since the estimator β̂ = (XT X)−1XT Ŷ and RSS = eT e. We use the
independence properties when we construct test statistics in the next section.
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Let e1, ..., ep be a fixed orthonormal basis for the column space of X . Extend this
basis to e1, ..., ep, ep+1, ..., en, an orthonormal basis for Rn. The vectors ep+1, ..., en

are orthogonal to the column vectors of X . Expand the n-component random vector
Y in this basis,

Y = Z1e1 + ... + Znen.

We should think of Zi as a random function of Y , with Zi = eT
i Y . Now Hei = ei

for i = 1, 2, ..., p since these vectors are in col(X). On the other hand Hei = 0 for
i = p + 1, ..., n (since XT ei = 0 for i > p). It follows that

Ŷ = Z1e1 + ... + Zpep,

since HY = H(Z1e1 + ... + Zpep). Now e = Y − Ŷ so

e = Zp+1ep+1 + ... + Znen.

The weights Zi = eT
i Y are distributed Zi ∼ N(eT

i E(Y ), σ2). For i = p+1, p+2, ..., n,
they are mean zero, since E(Y ) = Xβ, and eT

i X = 01,p. They are uncorrelated,
since cov(Zi, Zj) = eT

i cov(Y, Y )ej which is zero for i 6= j, since var(Y ) ∝ In.
Taking i = j we have var(Zi) = σ2. Since they are also jointly normal, they are
independent.

The estimated response Ŷ and the residuals e = Y − Ŷ are functions of the
two non-overlapping sets, (Z1, ..., Zp) and (Zp+1, ..., Zn), of mutually independent

random variables, so Ŷ and e are independent under the normal linear model.
We can now read off the distribution of RSS, and get an unbiased estimator for

σ. Since RSS = eT e,

RSS = Z2
p+1 + ... + Z2

n.

Since Zi/σ ∼ N(0, 1) for i = p + 1, p + 2, ..., n, and RSS/σ2 = (Zp+1/σ)2 + ... +
(Zn/σ)2, with (Zi/σ)2 ∼ χ2(1) mutually independent rv each having a chi-squared
distribution with one degree of freedom, it follows that

RSS/σ2 ∼ χ2(n− p),

under H0. Now if A ∼ χ2(r) then E(A) = r so E(RSS/σ2) = n− p and

s2 =
RSS

n− p

is an unbiased estimator for σ2. It follows that σ̂2
MLE = RSS

n is biased (but it is
also asymptotically unbiased, as it is a MLE).

2.4. Tests. We would like now to consider a collection of tests on the parameters of
a normal linear regression. We would like to test for the significance of a parameter,
of a group of parameters, test for parameters to be equal, or greater than one
another, and for properties of linear combinations of parameters.

The test for significance of a single parameter, we know. Suppose we want to
test H0 : βk = 0 against H1 : βk 6= 0 for some particular k from 1 to p. Under H0,

β̂k
√

σ2(XT X)−1
k,k

∼ N(0, 1)
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and RSS/σ2 ∼ χ2(n− p), so writing s2 = RSS/(n− p),

t =
β̂k

√

σ2(XT X)−1
k,k

×
√

σ2(n− p)

RSS

=
β̂k

s
√

(XT X)−1
k,k

is a suitably scaled ratio of independent standard normal and χ2 random variates.
Under the null, t is a realisation of a Student’s-t distributed random variable T ,

T ∼ t(n− p).

The p-value for a two sided test is 2(1− Pr(T < |t|)).
When we test for the significance of a group of parameters we use a test called

an F -test. If there is just one parameter i the group, then the F -test reduces to
the T -test we just described. Suppose we have a conjecture that there is no linear
relation between the response y and the last k explanatory variables, xp−k+1, ..., xp.
We want to test H0 : βp−k+1 = 0, βp−k+2 = 0, ..., βp = 0 against H1 : at least one

of the last k parameters is non-zero. Under H0, with β = β(0) say, we are fitting
the normal linear model

y =

p−k
∑

i=1

β
(0)
i xi + ǫ.

Let X̃ be a matrix made up of the first p−k columns of X . Under H0, y = X̃β(0)+ǫ
with β(0) a (p− k)× 1 vector, β(0) = (β1, ..., βp−k). When we fit this model we get

β̂(0) = (X̃T X̃)−1X̃T y. Let H(0) = X̃(X̃T X̃)−1X̃T be the hat matrix for the linear

model with design matrix X̃. Let Ŷ (0) = H(0)Y and

RSS(0) = (Y − Ŷ (0))T (Y − Ŷ (0)).

Under H0, the MLE for σ2 is

σ̂2
MLE,0 =

RSS(0)

n
.

The dimension of parameter space under the null is p− k + 1 (ie, β1, ..., βp−k, σ2).

Under H1, with β = β(1), we are fitting the normal linear model

y =

p
∑

i=1

β
(1)
i xi + ǫ.

This is the usual setup, with Y = Xβ(1) + ǫ, β̂(1) = (XT X)−1XT y, Ŷ (1) = HY ,

RSS(1) = (Y − Ŷ (1))T (Y − Ŷ (1)),

and

σ̂2
MLE,1 =

RSS(1)

n
.

The dimension of parameter space under the alternative is p + 1.
We can now give the Likelihood Ratio Test (LRT) statistic Λ for H0. Substi-

tuting the local values into the expression for ℓ(β̂, σ̂2
MLE ; y), which we gave at the
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end of Section 2.2, we get

Λ(Y ) = −2(ℓ(β̂(0), σ̂2
MLE,0; Y )− ℓ(β̂(1), σ̂2

MLE,1; Y ))

= n log(RSS(0))− n log(RSS(1)).

We reject H0 when the likelihood ratio statistic Λ falls in the critical region. We
know from the Neyman-Pearson theorem that this region has the form C1 = {y :
Λ(y) > C}. Asymptotically in n, Λ has as χ2 distribution with k degrees of
freedom, and this would give an approximate test for H0. However, we will see
that the LRT statistic is a strictly increasing function of another statistic, F (y),
for which we possess an exact distribution. This leads to an exact test with the
same critical region as the LRT: if C′ is chosen so that, under H0, F (Y ) > C′ with
probability 1− α, and C is chosen so that Λ(Y ) > C with probability 1− α, then
F (Y ) > C′ if and only if Λ(Y ) > C (imagine sorting the states y by F (y) and by
Λ(y) - you get the same order so the threshold is set at the same states).

Consider the F -statistic,

F (y) =
(RSS(0) − RSS(1))/k

RSS(1)/(n− p)
.

The corresponding random variable F (Y ) has a F (k, n− p) distribution under the
null hypothesis in which the last k parameters are zero. The F -distribution is new
to us. If A ∼ χ2(a) and B ∼ χ2(b) are two independent χ2 r.v.’s with a and b
degrees of freedom respectively, then the new r.v.

F =
(A/a)

(B/b)

has a F (a, b)-distribution on F > 0. This property defines the distribution. The
mean of F ∼ F (a, b) is b/(b − 2) so, under the null, the mean of F ∼ F (k, n − p)
is (n − p)/(n − p − 2) for n − p > 2, or about 1 for n ≫ p. The quantiles of an
F -distribution with k numerator and n − p denominator degrees of freedom are
known. Let F1−α(k, n− p) be the 1 − α quantile of F (k, n − p). We reject H0 at
significance level α if F (y) > F1−α(k, n− p).

How do we know F has the properties we claim for it? First, it is easy to check
that

Λ = n log

(

1 +
k

(n− p)
F

)

with n > p > k > 0, so Λ is a strictly increasing function of F , and this test based
on F is indeed a LRT. Secondly,

RSS(1)

σ2
∼ χ2(n− p)

and
RSS(0) − RSS(1)

σ2
∼ χ2(k).

The former we know, and the latter we demonstrate shortly. Thirdly, RSS(1) and

RSS(0) − RSS(1) are independent, again, something we will verify. Finally, since F
is the ratio of suitably scaled and independent χ2(n − p) and χ2(k) r.v. it follows
that F has an F (k, n− p) distribution, by the definition of this distribution given
above.
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What is the intuition here? The question which a LRT answers is, is there
evidence that the data fits the H1 model Y = Xβ(1) + ǫ better than the H0 model
Y = X̃β(0) + ǫ? Tests which look for significant changes in the RSS, such as the
F -test above, are called ANOVA, short for Analysis of Variance. When we fit the
more complex model, H1 above, there will be a reduction in the residual sum of
squares compared to the residual sum of squares we get when we fit the simpler

model H0. If H0 is good, then the fractional improvement (RSS(0)−RSS(1))/RSS(1)

in the RSS is slight. However, if we add lots of explanatory variables in H1, so
that dim(col(X)) approaches n, then we will see a big drop in the RSS, towards

zero. In order to account for this, the ratio (RSS(0) − RSS(1))/RSS(1) must be
weighted by the fractional change (n − p)/k in the number of degrees of freedom.
Now large values of F are a sign that that the added parameters in H1 are reducing
the estimated variance by an amount which is too great to be put down to chance.

We need to verify the second and third properties above. We are interested in the
distribution of F under H0, where E(Y ) = X̃β(0). We will modify the expansion

Y = Z1e1 + ... + Znen.

As before, e1, ..., en are an orthonormal basis for Rn, and e1, ..., ep are an orthonor-
mal basis for col(X). We can choose this basis so that there is a first group e1, ...ep−k

of vectors spanning the first p− k columns of X and a second group ep−k+1, ..., ep

completing the basis e1, ..., ep for col(X) (and notice ep−k+1, ..., ep are not a basis
for span(Xp−k+1, ..., Xp) unless span(Xp−k+1, ..., Xp) ⊥ span(X1, ..., Xp−k)). Since

Ŷ (0) = H(0)Y H(0) projects into space spanned by the first p− k columns of X , we
must have Hej = 0 for j > p− k, so

Ŷ (0) = Z1e1 + ... + Zp−kep−k

Similarly, Ŷ (1) = HY with Hej = 0 for j > p, so

Ŷ (1) = Z1e1 + ... + Zpep.

Now Y − Ŷ (1) = Zp+1ep+1 + ... + Znen so

RSS(1) = Z2
p+1 + ... + Z2

n.

Similarly, RSS(0) = Z2
p−k+1 + ... + Z2

n. It follows that

RSS(0) − RSS(1) = Z2
p−k+1 + ... + Z2

p .

The weights Zi i = 1, 2, ..., n are mutually independent, since they are jointly
normal, with zero covariance, exactly as before. They are distributed as Zi ∼
N(eT

i E(Y ), σ2) with E(Y ) = [X1, ...Xp−k]β so Zi ∼ N(0, σ2) for i = p− k + 1, ..., n
(ie, not just i = p + 1, ..., n as before).

We can see that RSS(0) − RSS(1) and RSS(1) are independent rv, since they are
functions of disjoint sets of independent rv. Also, since there are k terms in the

last sum above, (RSS(0) − RSS(1))/σ2 has a χ2(k) distribution and we are done
demonstrating the second and third properties.

We often test for two parameters β1 and β2 to be equal, so H0 : β1 − β2 = 0.

The MLE is β̂1 − β̂2 with variance

var(β̂1 − β̂2) = var(β̂1) + var(β̂2)− 2cov(β̂1, β̂2)

= σ2(XT X)−1
1,1 + σ2(XT X)−1

2,2 − 2σ2(XT X)−1
1,2
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so the test statistic is

β̂1 − β̂2

s
√

(XT X)−1
1,1 + (XT X)−1

2,2 − 2(XT X)−1
1,2

∼ t(n− p)

This works for linear combinations of parameters. If v is p× 1 and we want to test

for vT β = 0 then the MLE is vT β̂, and

var(vT β̂) = vT var(β̂)v

= σ2(vT (XT X)−1v),

so the test statistic is

vT β̂

s
√

(vT (XT X)−1v)
∼ t(n− p).

The quantities s2 and vβ̂ are independent, since s2 and β̂ are independent.

Exercise verify that v = (1,−1, 0, ..., 0)T gives the test for β̂1 − β̂2 = 0.

There are some shortcuts. For example, in a test for β1 = β2 the reduced model,
with β′

1 = β1 = β2 is
y = β′

1(x1 + x2) + β3x3 + ...

and the full model, Y = Xβ + ǫ, can be written

y = β′

1(x1 + x2) + β′

2(x1 − x2) + β3x3 + ...

so the test for β1 = β2 can be framed as a test β′

2 = 0. We can run a T or F test
to drop β′

2, with design matrix X = [X1 + X2, X1 −X2, X3, ..., Xp] and parameter
vector β = (β′

1, β
′

2, β3, ...., βp).

2.5. ANOVA, and an example. Because ANOVA tests are used so frequently,
the important numbers in the test are laid out in a standard way, to facilitate
reading. There is a little variation (the default R table doesn’t exactly follow my
rules), but just a little.

The ANOVA table sets out the numbers we need to make tests for dropping
certain collections of variables. Suppose the variables x1, ..., xp come in m = 3
groups (typically just 2 or 3 groups) and are ordered so that the groups are

{1}, {2, 3...p− k}, {p− k + 1, p− k + 2, ..., p}.
This splits off the variables xp−k+1 to xp. This is the variable grouping relevant for
the hypothesis H0 : βp−k+1 = βp−k+2 = ... = βp = 0, which we test with an F -test.

A typical ANOVA table gives fitting information for each of the models starting
from a simplest model with just intercept β1, adding the groups one at a time, up
to the model with all p variables. For the m = 3-group case, testing H0 : βp−k+1 =
βp−k+2 = ... = βp = 0, the model sequence is

y = β1 + ǫ,

y = β1 + β2x2 + ... + βp−kxp−k + ǫ,

y = β1 + β2x2 + ... + βp−kxp−k + ... + βpxp + ǫ,

If we order the variables in the right way, we can sometimes do model selection at
a glance, as we read down the table from top to bottom. If X1:i = [X1, X2, ..., Xi],
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Terms added Degrees Freedom Reduction in RSS Mean Square F statistic

X2:(p−k) p− k − 1 TSS− RSS1:(p−k)

TSS− RSS1:(p−k)

p− k − 1

(TSS− RSS1:(p−k))/(p− k − 1)

RSS1:p/(n− p)

X(p−k+1):p k RSS1:(p−k) − RSS1:p

RSS1:(p−k) − RSS1:p

k

(RSS1:(p−k) − RSS1:p)/k

RSS1:p/(n− p)

Residual n− p RSS1:p
RSS1:p

n− p

Table 1. ANOVA table for the groups of variables {x2, ..., xp−k}
and {xp−k+1, ..., xp} added incrementally to the intercept group
{x1}. In some tables a final column giving the p-value is included.

then the design matrices build from X1 to X = X1:p. Let RSS1:i be the residual
sum of squares for the fit with design matrix X1:i. The decrease in the residual
sum of squares when we add the variables xi+1, ..., xi+k to a model that already has
the variables x1, x2, ..., xi is RSS1:i − RSS1:(i+k). The number of residual degrees
of freedom in the fit for the model with design matrix X1:i is n− i (assuming the
columns of X1:i are linearly independent).

The layout of an ANOVA table for the three groups {1}, {2, ..., p− k}, {p− k +
1, ..., p} is shown in Table 1. TSS = (y − ȳ)T (y − ȳ) is the residual sum of squares
for a model with just intercept, in other words, the total sum of squares adjusted
for intercept. RSS1:p is the residual sum of squares for the full model.

The F -statistic in row two of Table 1 is the F -test statistic for the test to add
the variables {xp−k+1, ..., xp} to a model with variables {x1, .., xp−k}, which is the
test we set up in Section 2.4.

The F -statistic in row one of Table 1 is an F -test statistic for the test to add
the variables {x2, ..., xp−k} to a model with just x1, the intercept variable. It
might seem natural to use the divisor RSS1:(p−k)/(n − (p − k)), for an F with
p − k − 1 numerator and n − (p − k) denominator degrees of freedom. However,
(i) the divisor RSS1:p/(n − p) is “just as good” as RSS1:(p−k)/(n− (p − k)), since
it too is independent of TSS − RSS1:(p−k), so we can see (TSS − RSS1:(p−k))(n −
p)/RSS1:p)(p − k − 1) has an F (p − k − 1, n − p) distribution under the null, and

(ii) it is better, as RSS1:p)/(n − p) is an estimate of σ2 which is not biased if the
variables xp−k+1, ...xp added in the row below turn out to be explanatory. You
might possibly add (iii) the divisor RSS1:p/(n − p) has a higher variance than
RSS1:(p−k)/(n − (p − k)), if variables in the rows below really were not related to
the response, so in that case we would do better to drop them from the ANOVA.
That is equivalent to using the RSS1:(p−k)/(n − (p − k)) divisor. Another way to
make point (iii) is that the RSS1:(p−k)/(n− (p− k)) divisor is the one given by the
LRT, where as RSS1:p)/(n− p) is just some statistic with a distribution we happen
to know under the null. On balance item (ii) controls our choice of test statistic,
so the table opts for higher variance in return for lower bias.
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Table 1 is the table we might set out if we were carrying out the F -test for
H0 : βp−k+1 = βp − k + 2 = ... = βp = 0 against H1 : β ∈ Rp, though we could
omit the first row.

Other relevant test statistics can be computed from the numbers in an ANOVA
table like Table 1. For example, the test for the model hypothesis H0′ : β2 = ... =
βp = 0 against the full model H1 : β ∈ Rp, is the test for no linear relation to the
variables x2, ...xp. The test statistic is

F ′ =
TSS− RSS1:p

p− 1
× n− p

RSS1:p
,

since k = p − 1 here. The second factor is given at the bottom of the table. The
first element TSS−RSS1:p is the sum of the terms in the third column of the table,

TSS− RSS1:p = (RSS1:(p−k) − RSS1:p) + (TSS− RSS1:(p−k)),

so we can form F ′ by taking appropriate sums and ratios of table elements. Note
that the statistic F ′ replaces the widely used statistic R2 as a measure of fit quality
(or the lack of it). While R2 runs from zero to one, we have no absolute scale for
quality of fit (how close to one is acceptable), F ′ runs from 0 to infinity (and big
F ′ is poor fit) and does give a direct test for significant linear dependence. Note
that R outputs both F ′, the test statistic for no linear relation, and the p-value
for this test, automatically, when we make a summary() of a lm() output. This is
more useful to us than R2, though R gives this as well. [End L3]

Again, these numbers are useful for calculating other tests. The test for no linear
dependence on the variables x2, ..., xp, has F statistic

F =
(TSS− RSS1:p)/(p− 1)

RSS1:p/(n− p)
,

with (p− 1) numerator and (n− p) denominator degrees of freedom. The quantity
TSS− RSS1:p is the sum of all the entries in the third column, bar the last,

TSS− RSS1:p = (RSS1:im−1 − RSS1:p) + (RSS1:im−2 − RSS1:im−1) + ...

... + (RSS1:ii2
− RSS1:i3) + (TSS− RSS1:i2).

Example 2.3. Consider variable selection for the trees data. We looked at this in
Example 2.2. When we have many variables, we can’t test all possible combinations.
Physical considerations (aka common sense) are always important, but especially
so, when we are setting up the hypotheses. We considered the linear model

y = β1 + β2x2 + β3x2 + ǫ

with y = log(v/hg2), β1 = log(η), x2 = log(h), x3 = log(g) and ǫ = log(γ) (and v,
g and h the volume, girth and height).

Look at the R-output for this model in Example 2.2. The quoted residual stan-

dard error is s2 = RSS/(n− p): the RSS is (Y − Ŷ )2, or in R,

> (rss<-sum(trees.lm1$residuals^2))

[1] 0.1854634

so estimated error variance aka the Residual standard error s2 is

> (sqrt(rss/28))

[1] 0.08138607
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Figure 3. (LEFT) A qqplot of the residuals of the logged-model
fit to the trees data looks healthy, and (RIGHT) no sign of correla-
tion between residuals and fitted values (though a possible funnel,
increasing variance with fitted value).

You might like to check the elements in the summary(trees.lm1) table.
Later on we look at checks on the fit. Under the model we have just estimated

(which is H1, with the full parameter set), the residuals are given by e = (In−H)ǫ,
so that each residual ei is normally distributed and the residuals e and fitted values
Ŷ = HY are independent. We can make a qqplot of the sample quantiles against
the normal quantiles and look for normality. Also, we can plot fitted values against
residuals and look for a trend. The qqplot is obviously important here, as our
ǫ = log(γ) is the log of a multiplicative error, so this is an area we might expect to
see departures from the model. The qqplot in Figure 3 is very well behaved, except
possibly in the upper tail.

We now come to the test for β2 = β3 = 0. R gives us the ANOVA tables. Here
are several ways to do this. We begin by fitting the reduced, H0, model.

> trees.lm0<-lm(log(Volume/(Height*Girth^2))~1)

The fields of trees.lm0 are special cases. There is just an intercept, so X̃ = 1n,1,
XT X = n, (XT X)−1 = 1/n, and (XT X)−1XT y = ȳ.

Now we use ANOVA to see if β2 = β3 = 0. We can do this ‘by hand’.

> (rss0<-sum(trees.lm0$residuals^2))

[1] 0.1876858

> (rss1<-sum(trees.lm1$residuals^2))

[1] 0.1854634

> k<-2

> n.minus.p<-31-3
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> (F<-(rss0-rss1)*n.minus.p/(k*rss1))

[1] 0.1677617

> (p<-1-pf(F,k,n.minus.p))

[1] 0.8463989

The p-value, p = 0.85, is not significant, so the LRT supports H0 : β2 = β3 = 0
(that is, there is no evidence for dependence of y on x2 and x3).

We can get R to form something like a regular ANOVA table, Table ??. The
default R ANOVA adds one variable at a time, so the groups of variables are
{x1}, {x2}{x3} (since F -tests for many other grouping can be computed form this
’finest resolution’ table). Because the change in the number of degrees of freedom
is one at each row, columns three and four of Table ?? are identical.

> anova(trees.lm1)

Analysis of Variance Table

Response: log(Volume/(Height * Girth^2))

Df Sum Sq Mean Sq F value Pr(>F)

log(Height) 1 0.001868 0.001868 0.2820 0.5996

log(Girth) 1 0.000354 0.000354 0.0535 0.8188

Residuals 28 0.185463 0.006624

In this table Sum Sq corresponds to “Reduction in RSS” in Table ??. Thus the
residual sum of squares RSS1:p for the full model is RSS1:3 = 0.185463, and
RSS1:p/(n − p) = 0.185463/28 = 0.006624. The other quantity we need, for the
test β3 = β2 = 0 is TSS− RSS1:3, which is

RSS1:2 − RSS1:3 + TSS− RSS1:2 = 0.000354 + 0.001868 = 0.002222.

So

F =
(TSS− RSS1:3)/2

RSS1:p/(n− p)

= 0.001111/0.006624≃ 0.1677

and the F -test proceeds as before.
The ANOVA table we got from R didn’t quite have the variable grouping we

wanted - we got the default grouping, which just put every explanatory variable
in a separate group, so we had to do some arithmetic to get our test statistic.
Alternatively, we can tell R which specific models we want to compare, and get R
to form a table

> anova(trees.lm0,trees.lm1)

Analysis of Variance Table

Model 1: log(Volume/(Height * Girth^2)) ~ 1

Model 2: log(Volume/(Height * Girth^2)) ~ 1 + log(Height) + log(Girth)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 30 0.187686

2 28 0.185463 2 0.002222 0.1678 0.8464

which we see is not a standard ANOVA table, but is nevertheless easy enough
to read. We read this RSS1:3 = 0.185463, TSS = 0.187686, TSS − RSS1:3 =
0.002222, with k = 2 for the two variables we set to zero, and if F = 28(TSS −
RSS1:3)/2RSS1:3 then F = 0.1678. Finally, if F2,28 ∼ F (2, 28) is an F -distributed
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rv with 2 numerator and 28 denominator degrees of freedom, then we read off
Pr(F2,28 > F ) ≃ 0.85, so the p-value shows no evidence for a departure from H0.
This time, there was no arithmetic needed.

We could get this directly, also, from the summary(trees.lm1) output above.
Recall that this output automatically gives the F -statistic for the reduced model
with no explanatory variables except the intercept, β1 here. That is just the model
reduction we are considering, so the final line

F-statistic: 0.1678 on 2 and 28 DF, p-value: 0.8464

gives us the same elements, F = 0.1678 and Pr(F > f) ≃ 0.85. This part of the
output would not be relevant if we were considering dropping a smaller subset of
the explanatory variables.

2.6. Categorical variables. So far we have treated continuous explanatory vari-
ables. However, explanatory variables may be categorical. The values taken by a
categorical variable are called its levels, and the levels may for ordered or unordered.
We will discuss unordered categorical variables.

A categorical explanatory variable x
(cat)
k ∈ {1, 2, ..., c} with c levels is equivalent

to c binary indicator variables gk,a = I
x
(cat)
k

=a
, with a = 1, 2, ..., c the level index, so

the k’th response yk has one explanatory variable gk,a for each level of the original
categorical variable. Suppose we want to allow the response to have a mean which

depends on the level of x
(cat)
k , and suppose that, for the k’th response yk, there are

m other explanatory variables xk,1, xk,2, ..., xk,m including an intercept, xk,1 = 1.
The model

yk = α + α2gk,2 + ... + αbgk,b + γ2xk,2 + ... + γmxk,m + ǫk

allows the mean of yk to vary with the level of x
(cat)
k . What happened to α1gk,1?

If we include it, then our model is over-parameterized. If the level for response k

is x
(cat)
k = 1, then gk,1 = 1 and gk,2 = ... = gk,c = 0, so

E(Yk) = α + γ2xk,2 + ... + γmxm.

If the level is x
(cat)
k = a, then gk,a = 1 and the others are zero, so

E(Yk) = α + αa + γ2xk,2 + ... + γmxm.

We see that αa is the offset in the intercept of the level-a samples relative to the
intercept α of the level-1 samples. We are using level 1 as the baseline level.

If Ga is the binary column vector Ga = (g1,a, ..., gn,a)
T for the level-a indicator,

and X1, X2, ..., Xm are column vectors for other variables, then the design matrix
for the model above is X = (X1, G2, ...Gc, X2, ..., Xm) (so p = m + c − 1 here,
and columns are in no particular order). The model itself is Y = Xβ + ǫ with
β = (α, α2, ..., αc, γ2, ..., γm). We left out G1 when we formed the new design
matrix because X has a first column of ones, corresponding to the intercept. But
then X1 =

∑c
a=1 Gj since each observation must have its categorical variable in one

of the levels 1, 2, ..., c, and so the columns of (X1, G1, G2, ..., Gc, X2, ...Xm) are not
linearly independent, and again, the model with all c columns, G1, ..., Gc, is over-
parameterized. The variables G1, ..., Gc are sometimes called a dummy variables
for the level and the matrix (G2, ..., Gc) is called a contrast matrix.
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Example 2.4. The data depicted in Figure 4 shows average Oxford house prices (in
thousands of pounds) for 100 months starting April 2000 ending July 2008 for De-
tached, Semi-Detached and Terraced houses and Flats. The website www.home.co.uk
displays data of this kind. The Flats and Detached properties clearly have lower
and higher variance respectively, than the two other classes. We will deal with them
later. We start with an analysis of the two-hundred Semi-Detached and Terraced
prices. Here are some rows of data

> ohp[1:3,]

price type month sales

329 Semi-Detached 100 19

276 Semi-Detached 99 37

300 Semi-Detached 98 45

.

.

.

> ohp[99:102,]

price type month sales

148 Semi-Detached 2 75

148 Semi-Detached 1 68

294 Terraced 100 9

310 Terraced 99 35

.

.

.

> ohp[198:200,]

price type month sales

154 Terraced 3 75

150 Terraced 2 65

149 Terraced 1 62

The prices price are average figures for the month, in thousands of pounds, while
the number of sales sales gives the number of individual sale prices which were
averaged to form the price reported for that month. We will leave a discussion
of column four for the moment. The variable type is now a two-level categorical
variable.

Is there any difference between the price trends for the two types of houses? The
lattice plot, Figure 4, supports a linear model for price as a function of month.
We have omitted the two-level categorical variable type in Figure 4. We will begin
by fitting a model with a different offset for the two levels - we assume prices
grow at the same rate, but there is an offset in the price for Terraced relative
to Semi-Detached properties. Let yk = price[k], xk,1 = 1, xk,M = month[k] and
gk,T = Itype[k]=Terraced, so that

yk ∼ α + αT gk,T + γMxk,M + ǫk, ǫk ∼ N(0, σ2).

In this model α is the price of a Semi-Detached house in month 0, and α + αT is
the price of a Terraced house in month 0. In R, the intercept is included by default,
so price∼month+type and price∼1+month+type specify the same model. Also, R
will automatically construct dummy variables for the levels of a categorical variable
(such as type, which has levels Semi-Detached and Terraced).
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Figure 4. Lattice scatter plot of monthly average prices, against
month and number of sales. (solid/black circle) Semi-Detached,
(open/red circle) Terraced, (solid/green square) Flat, (open/blue
square) Detached.

How does R code the categorical variable type?

> X<-model.matrix(price~month+type,data=ohp)

> X[1:3,]

(Intercept) month typeTerraced

1 100 0

1 99 0

1 98 0

> X[99:102,]

(Intercept) month typeTerraced

1 2 0

1 1 0

1 100 1

1 99 1

> X[198:200,]

(Intercept) month typeTerraced

1 3 1

1 2 1

1 1 1
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The rightmost column of the design matrix in this R implementation is GT =
(g1,T , ..., gn,T )T . The baseline level is Semi-Detached and the variable mapping for
the design matrix above is (α, γM , αT ) = (β1, β2, β3). You need to check you know
which variable R is using as the baseline, though you wouldnt use model.matrix()
to do that: the baseline level is simply the level omitted in the summary() output
(see below). The offset in the mean for a house with type equal Terraced is β3,
the parameter for column three in X, the R the design matrix above.

OK, so let’s fit the model price~month+type.

> ohp.lm<-lm(price~month+type,data=ohp)

> summary(ohp.lm)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 158.09727 3.59152 44.020 <2e-16 ***

month 1.69887 0.05531 30.716 <2e-16 ***

typeTerraced -2.58000 3.19306 -0.808 0.42

...

Residual standard error: 22.58 on 197 degrees of freedom

Multiple R-Squared: 0.8274, Adjusted R-squared: 0.8256

F-statistic: 472.1 on 2 and 197 DF, p-value: < 2.2e-16

We don’t need an F -test to test αT = 0 (ie, β3 = 0) here: for a single parameter,
the t-test is equivalent. We have n = 200 data and p = 3. Reading off the table,
α̂T = −2.58, and the t-statistic for the test αT = 0,

α̂T /s

√

(XT X)−1
33 = −2.58/3.19

is equal to −0.81, with n−p = 197 degrees of freedom. The p-value 2(1−Pr(T < |t|))
is 2 ∗ (1− pt(0.81, 197)) ≃ 0.42 (which we can read in the right column) and this
shows that the Terraced/Semi-Detached distinction is not significant. The two
regressions are plotted in Figure 5. There is clearly little difference. Note that
this is not the same as making two regressions and using a t-test for equality of
intercepts, as we are imposing (i) equal slopes, and (ii) equal error variance σ2.

Exercise Can you see any sign of model-mispecification in Figure 5?

2.7. Variable interactions. We can form new explanatory variables from old by
taking functions of explanatory variables. Interactions of the form βixi + βjxj +
βIxixj are particularly common, and mean something like “variable j has more
impact on the response when variable i is large” and vis versa. If xi is a binary
dummy variable for some level a of a categorical variable xcat, then the slope with
increasing xj is βj for observations with xcat 6= a (where xi = 0) and the slope is
βj + βI for observations with xcat = a (where xi = 1).

When we have interactions we often include lower order terms in the model,
though we might have no ‘physical’ use for them. Suppose y = α + βx1x2 with x1

in Celcius. If we switch to Farenheit, x1 = mx′

1 + d with m = 5/9 and d = 160/9,
then y = α + dβx2 + mβx′

1x2. Now we have a new kind of term dβx2. We may
dislike the idea that the kinds of terms in our model (rather than just the parameter
values) are dependent on the zero-location for interacting variables, and instead at
least begin our modeling with y = α + β1x1 + β2x2 + βIx1x2. Faraway (2004)
Chapter 8 page 122 has more on this.
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Figure 5. Equal-slope regression of the Oxford house-price data.
(Solid line/points) Semi-Detached, (circles/dashed) Terraced.

Example 2.5. We looked in Example 2.4 at prices for Terraced and Semi-Detached
houses in Oxford. Let us see if Terraced and Semi-Detached houses have grown at
different rates. In order to make the whole thing a little more interesting, I will add
Flats to the picture. I am ignoring the somewhat lower variance of the Flats data,
and more on this anon. Have Flats increased in price at the same rate as Terraced
and Semi-Detached properties? Is there any difference in the rates or intercepts for
the latter house types?

With Flat providing the baseline, we fit the model

yk ∼ α + αT gk,T + αSDgk,SD + γMxk,M + γMT xk,Mgk,T + γMSDxk,Mgk,SD + ǫk

with ǫk ∼ N(0, σ2) and, for observation k = 1, 2, ..., n, we have yk = price[k],
gk,T is the dummy indicator variable for type[k] = Terraced, gk,SD is the dummy
indicator variable for type[k] = Semi−Detached and xk,M is the value of month[k].
In month 0 (so, at the intercept), the Flat price is α, the Semi-Detached price is
α + αSD, and the Terraced price is α + αT thousands of pounds. Flat prices go
up at rate γM , Semi-Detached up at rate γM + γMSD, and Terraced up at rate
γM + γMT thousands of pounds per month. In R the model price∼month*type
is expanded as the model price∼1+ month + type + month:type, so that the :

notation gives the product term by itself, with no lower order terms, while the *

notation includes lower order terms by default.

> ohp.lm<-lm(price~month*type,data=ohp)

> (ohp.lms<-summary(ohp.lm))

Call:

lm(formula = price ~ month * type, data = ohp)
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Residuals:

Min 1Q Median 3Q Max

-54.522 -13.275 -1.146 10.431 93.285

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 126.50182 4.14322 30.532 < 2e-16 ***

month 1.21838 0.07123 17.105 < 2e-16 ***

typeSemi-Detached 29.61091 5.85940 5.054 7.63e-07 ***

typeTerraced 31.00000 5.85940 5.291 2.39e-07 ***

month:typeSemi-Detached 0.51978 0.10073 5.160 4.55e-07 ***

month:typeTerraced 0.44119 0.10073 4.380 1.65e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 20.56 on 294 degrees of freedom

Multiple R-Squared: 0.8661, Adjusted R-squared: 0.8638

F-statistic: 380.3 on 5 and 294 DF, p-value: < 2.2e-16

The variable mapping is

(α, αSD, αT , γM , γMSD, γMT ) = (β1, β2, β3, β4, β5, β6).

We see that Flat price grows at a lower rate than Semi or Terraced (since the offsets
αSD ≃ 0.52, αT ≃ 0.44 are positive, and significant). We can test for differing rates
between Terraced and Semi-Detached. The test statistic is

T =
β̂5 − β̂6

√

s2(XT X)−1
5,5 + s2(XT X)−1

6,6 − 2s2(XT X)−1
5,6

≃ 0.52− 0.44√
0.100732 + 0.100732 − 2× 0.005074

≃ 0.78

Now if Tn−p ∼ t(n − p) with n = 300 and p = 6 here, then the p-value 2(1 −
Pr(Tn−p > T )) is 2 ∗ (1 − pt(T, 294)) ≃ 0.436. Note that the matrix (XT X)−1 is
part of the output of summary(), so the code I used to make this test was

> (beta<-ohp.lm$coefficients)

(Intercept) month typeSemi-Detached

126.5018182 1.2183798 29.6109091

typeTerraced month:typeSemi-Detached month:typeTerraced

31.0000000 0.5197840 0.4411881

> (s<-ohp.lms$sigma)

[1] 20.56092

> XTXi<-ohp.lms$cov.unscaled

> (T<-abs( (beta[5]-beta[6])/(s*sqrt(XTXi[5,5]+XTXi[6,6]-2*XTXi[5,6])) ))

0.780243

> 2*(1-pt(T,ohp.lm$df.residual))

0.4358756

We conclude that there is no evidence for different rates, when the intercepts are
unequal. We can see the fitted lines in Figure 6. There is clearly little in it.
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Figure 6. Regression of the Oxford house-price data. (up-
per dashed black line/black full circles) Semi-Detached, (lower
dashed red line/red empty circles) Terraced, (solid green line/green
squares) Flat.

We now want to make the combined test, dropping the intercept and slope
distinction between Terraced and Semi-Detached. Since we now make no distinc-
tion between Terraced and Semi-Detached, we are effectively merging the levels
Terraced and Semi-Detached within the categorical variable type. Let gk,TSD =
gk,T + gk,SD. With level Flat again providing the baseline, the reduced model,
with αT = αSD, γT = γSD is

yk ∼ α + αTSDgk,TSD + γMxk,M + γMTSDxk,Mgk,TSD + ǫk

One easy way to implement this in R is to re-level the categorical variable, but
otherwise proceed as before.

> # last two levels Semi-Detached and Terraced are over-written with ’T.or.SD’

> ohpr<-ohp

> levels(ohpr$type)<-c(’Flat’,’T.or.SD’,’T.or.SD’)

> # fit the reduced model

> ohpr.lm<-lm(price~month*type,data=ohpr)

> # calculate residual sums of squares for full (rss1) and reduced (rss0) models

> rss0<-sum(ohpr.lm$residuals^2)

> rss1<-sum(ohp.lm$residuals^2)
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> # form the F statistic and calculate a p-value

> F<-((rss0-rss1)/2)/(rss1/294)

> (pval<-1-pf(F,2,294))

[1] 0.4983896

At around 0.5, the p-value for the LRT is not significant, so the test favors the
reduced model. It seems that both prices and trends in prices for Terraced and
Semi-Detached types are the same, as you might guess from Figure 6.

You can check, from the summary(ohpr.lm) output (not shown) that γ̂MTSD

is non-zero and positive (the p-value for γ̂MTSD > 0 is tiny), so Flat prices have
increased at a rate which is significantly lower than the rate of increase for Terraced
and Semi-Detached properties. Note that this is still not the same as making two
regressions, as we are imposing equal error variance σ2 for the response under the
two types. Note also that our conclusions are based on gross data for Oxford, and
the data have been slightly jittered, so local trends could differ. [End L5]

2.8. Blocks, Treatments and Designs. Chapters 14-16 of ’Linear Models with
R’ by J. Faraway covers this material at about the right level for us. See the
discussion in Davison (2003) for more detail.

One important kind of categorical variable arises when the data have been gath-
ered from b blocks, yi,j , i = 1, 2, ..., b, j = 1, 2, ..., ni corresponding to groups of
subjects that are expected to have similar response to the explanatory variables.
Imagine collecting observations of the body mass index (BMI) of eighty five-year-
old children from different schools. In one design we measure the BMI of eight
randomly selected five-year-olds in each of 10 schools. For each child we record the
BMI and the school. In another design, we might do exactly the same, but fail to
record the school. The first data set has a block structure, with 10 blocks. The
block index is often explanatory. If, for example, there is a correlation between
parent income-level, school and incidence of obesity, then ‘school’ will be explana-
tory for ‘BMI’. In such cases we code the block index i as a categorical explanatory
variable in the design matrix.

Besides taking subjects from distinct groups, and distinguishing group responses,
we may also give subjects different treatments, and distinguish responses to different
treatments. If there is a block structure to the population, with subjects in different
blocks having different treatment responses, and we ignore it, then this will tend
to inflate the estimated error variance s2, and real differences in the treatment
response may not be detected.

“Treatment factors are those for which we wish to determine if there is an effect.
Blocking factors are those for which we believe there is an effect. We wish to prevent
a presumed blocking effect from interfering with our measurement of the treatment
effect”, a a neat encapsulation I found in Heiberger and Holland ‘Statistical Analysis
and Data Display’, Springer (2004).

Example 2.6. The following example is taken from Dr D. Lunn’s previous lecture
notes for this course. Twelve piglets were fed three different diets (A, B and C)
in order to see which diet led to the greatest weight gain. The piglets came from
four different litters (I,II, III and IV). We are looking for an effect (a mean shift in
weight gain) due to diet, and we want to allow for variation (another mean shift)
due to litter. If yi,j is the response in row i and column j of Table 2 then the model
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Diet
Litter A B C
I 89 68 62
II 78 59 61
III 114 85 83
IV 79 61 82

Table 2. Piglet diet data from D. Lunn (2007)

we want to fit is

y1,1 = α + ǫ1,1

y1,j = α + τj + ǫ1,j

yi,1 = α + γi + ǫi,1

yi,j = α + γi + τj + ǫi,j

for i = 2, 3, 4 and j = 2, 3. Notice that i = 1 (Litter I) and j = 1 (Diet A) are the
baseline levels for Litter and Diet. The blocks (Litter) and treatments (Diet) are
categorical, and can be coded using dummy variables. Let k = 1, 2, ..., n = 12 run
over subjects, as appears in the margin of the following output.

> pigs<-data.frame(c(89,78,114,79,68,59,85,61,62,61,83,82),

+ c(’I’,’II’,’III’,’IV’),

+ c(’A’,’A’,’A’,’A’,’B’,’B’,’B’,’B’,’C’,’C’,’C’,’C’))

> names(pigs)<-c(’Gain’,’Litter’,’Diet’)

> pigs

Gain Litter Diet

1 89 I A

2 78 II A

3 114 III A

. . .

10 61 II C

11 83 III C

12 82 IV C

Each row corresponds to a subject (a piglet). Let gk,1, ..., gk,4 be four dummy
indicator variables for the Litter of the subject in row k. Let zk,1, zk,2, zk,3 be
dummy variables for Diet. The model above is

yk = α + γ2gk,2 + γ3gk,3 + γ4gk,4 + τ2zk,2 + τ3zk,3 + ǫk

If for a = 1, ..., 4, Ga = (g1,a, ..., gn,a)
T and for a′ = 1, 2, 3, Z ′

a = (z1,a′ , ..., zn,a′)T ,
then the design is X = (G2, G3, G4, Z2, Z3).

> (X<-model.matrix(Gain~Litter+Diet,data=pigs))

(Intercept) LitterII LitterIII LitterIV DietB DietC

1 1 0 0 0 0 0

2 1 1 0 0 0 0

3 1 0 1 0 0 0

. . .

10 1 1 0 0 0 1

11 1 0 1 0 0 1
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12 1 0 0 1 0 1

In matrix notation the model we are fitting is Y = Xβ+ǫ with β = (α, γ2, γ3, γ4, τ2, τ3).
Now, lets fit the model.

> pigs.lm<-lm(Gain~Litter+Diet,data=pigs)

> summary(pigs.lm)

Call:

lm(formula = Gain ~ Litter + Diet, data = pigs)

Residuals:

Min 1Q Median 3Q Max

-8.250 -4.937 -0.375 2.938 12.750

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 86.250 5.763 14.967 5.6e-06 ***

LitterII -7.000 6.654 -1.052 0.33332

LitterIII 21.000 6.654 3.156 0.01967 *

LitterIV 1.000 6.654 0.150 0.88547

DietB -21.750 5.763 -3.774 0.00924 **

DietC -18.000 5.763 -3.124 0.02049 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 8.15 on 6 degrees of freedom

Multiple R-Squared: 0.8569, Adjusted R-squared: 0.7376

F-statistic: 7.184 on 5 and 6 DF, p-value: 0.01623

It is clear from the parameter estimates that Litter I and Diet A have been taken
as the baseline levels for the respective categorical variables.

Is Diet predictive for Gain? The ANOVA table for variable groups

{1}, {LitterII, LitterIII,LitterIV}, {DietB, DietC}
is

> anova(pigs.lm)

Analysis of Variance Table

Response: Gain

Df Sum Sq Mean Sq F value Pr(>F)

Litter 3 1304.25 434.75 6.5458 0.02545 *

Diet 2 1081.50 540.75 8.1418 0.01952 *

Residuals 6 398.50 66.42

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

so Diet is predictive at 5% significance.

Example 2.7. What happens if the data did not record the block variable Litter?
The variation within each diet is inflated by variation due to Litter. If the Litter
variable is not there, this variation increases the residuals, so the estimated variance,
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s2 = RSS/(n − p), is larger. This in turn pulls down the t and F test statistics,
which both have RSS in the denominator, so p values tend to increase. The outcome
of ignoring variation due to block variables is that the response due to treatment
variables which are marginally significant can be explained away as noise, as their
parameters are no longer significantly different from zero.

> anova(lm(Gain~Diet,data=pigs))

Analysis of Variance Table

Response: Gain

Df Sum Sq Mean Sq F value Pr(>F)

Diet 2 1081.50 540.75 2.8582 0.1094

Residuals 9 1702.75 189.19

Now the F -test for a linear relation between Gain and Diet shows Diet is no longer
explanatory - the effect is lost. Notice that the error variance estimate s2 has
jumped. In the summary() output above, for the model Gain ∼ 1+ Litter+ Diet,
we see s = 8.15 where the model Gain ∼ 1 + Diet with no block structure has
s =

√

RSS/(n− p) =
√

1702.75/9 = 13.75. This jump in RSS, from 398 (in the
Gain ∼ 1+ Litter+ Diet ANOVA) to 1702 (in the Gain ∼ 1+ Diet ANOVA), is
due to the extra variation across litter being treated as variation across treatment.

When we set up a design, we may have some choice in the assignment of treat-
ments to subjects. The point of the trial is to see if the response depends on the
treatment. Suppose the ‘treatment’ levels are ’Give drug’ and ’Give placebo’ and
the response is some index of health. If we are allowed to choose which subject
gets which treatment, we could distort the trial outcome by, for example, choosing
to give the drug to subjects who for some reason are more likely to get better any-
way. Wonderdrug! In order to avoid all traps of this kind, we typically assign the
treatments to subjects completely at random. A design with everyone in one block,
and treatments assigned to subjects at random, is called completely randomised. If
the subjects are in blocks, with ma subjects in block a, and we apply treatment
t = 1, 2, ..., T to ma,t different subjects in block a = 1, 2, ..., b, then, for each treat-
ment, we choose ma,t subjects independently at random and without replacement
from the ma subjects in the a’th block. If ma,t = m, so that each treatment is
applied to the same number of subjects in each block, then the design is called a
randomised complete block design. The treatments are distributed in a balanced
way through the blocks.

The piglets data is balanced, as each of the four litters contains one piglet on
each of the three diets, so b = 4, T = 3 and ma,t = 1 for all a = 1, ...4, and
t = 1, 2, 3. A randomised complete block design is balanced in such a way that the
block and treatment parameter estimates are independent, and so the treatments
can be analyzed separately from blocks. Informally, in a completely balanced design
the treatments are all tested under the same conditions, so when we compare treat-
ments, it doesn’t matter what those conditions were. You have another example of
a completely balanced design in the last problem of Problem sheet 2.

Sometimes the number of subjects ma in a block is smaller than T the number
of treatments. In that case the design will be incomplete, since some blocks will
have no instances of some treatments. An incomplete block design may still be
balanced.
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3. Model Checking and Model Selection

3.1. Model Checking. We are fitting a normal linear model y = Xβ + ǫ with ǫ ∼
N(0, Inσ2), and X a n×p design matrix with one column Xi = (x1,i, x2,i, ..., xn,i)

T

for each of the i = 1, 2, ..., p explanatory variables. Under this model the vector y
of n responses is a realisation of the rv Y ∼ N(Xβ, Inσ2).

Model violations take many forms. A misspecified model is structurally inap-
propriate for essentially all responses. For example, the response y may not be a
linear function of the linear predictors Xβ, and we need to transform the response.
This is discussed in a section below on the Box-Cox family of transformations. We
may choose to work with a misspecified model if we have reason to believe that the
biases in fitted values or parameter estimates are not large enough to invalidate the
inference, for parameters of interest. On the other hand the problem may lie with
the data. The normal linear framework may be good for most data points, but a
few of the responses may have quite different causative factors. Such data points
are called outliers. We try to identify them and then typically remove them from
further analysis.

We have a range of validatory checks for model mispecification and outlier de-
tection. The most straightforward check for linearity is to plot the explanatory
variables against the response, as we do in a lattice plot, such as Figure 1. Varia-
tion in the response caused by variation in other variables may obscure the linear
response to any single variable. Added variable plots (Problem sheet 1 Q1) help by
focusing on the relation between the response and a single variable, removing vari-
ation due to other fitted variables. These check the linearity of the running mean.
We have checks also on the independence and constant variance of ǫ, the errors.
We saw that the fitted values ŷ = Hy (with hat matrix H = X(XT X)−1XT ) and
the n-component vector of residuals e = y− ŷ are independent under the model, so
a plot of residuals against fitted values should show no correlation.

Misfit. One weakness of the residuals/fitted-values plot, as a diagnostic tool, is that
the residuals may have unequal variance under the model. A large residual ek could
be a sign that the kth data point is an outlier, but it might have a large variance as
a consequence of the experimental design. The individual residuals ei i = 1, 2, ..., n
are all mean zero normal rv, with variance matrix

var(e) = var((I −H)y)

= σ2(I −H)(I −H)T

= σ2(I −H),

since H2 = H = HT . The diagonal entries hkk, k = 1, 2, ..., n of H control the
variances of the components of e and ŷ. The residual variances can be unequal,
since var(ek) = σ2(1− hkk).

Exercise Show that var(ŷ) = σ2H .
The standardised residuals rk, k = 1, 2, ..., n have zero mean and equal variance.

They are obtained by scaling the residuals:

rk =
ek

s
√

1− hkk

,

with s2 an unbiased estimate of σ2, under the normal linear model. They (the
rk) have approximately unit variance, and can be compared with standard normal
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variables, an approximation which will be good at large n− p. Because s and e are
correlated, we cannot easilly compute the distribution of the standardised residuals.

Exercise Show that the standardised residuals r are (like the residuals e) indepen-
dent of the fitted values, ŷ.

We can make normal qqplots of standardised residuals, and plot them (the rk)
against fitted values ŷ. We often mistakenly fit a model of constant variance to
data in which the variance of the response increases with the underlying mean.
This model mispecification is witnessed by a trend to increasing variance in e′ with
ŷ.

A response yk which generates a relatively large residual ek need not be an
outlier, since var(ek) = σ2(1− hkk), and 1− hkk may be relatively large. We might
expect the standardised residuals r to be a good basis for outlier detection, since
these should have variance about one under the normal linear model. Standardised
residuals exceeding two (standard deviations) are large. The problem here is that
s2 = eT e, the denominator in the expression for rk, is computed from the residuals
e themselves. A response yk, which is truly outlying, may have a large residual ek,
but this will inflate our estimate s2 for σ, and we may end up with a moderate
standardised residual rk. A bad response with an hkk value close to one has a low
variance. It ‘pulls’ the fitted surface towards itself, so that ek is small, and again
rk is not obviously large. What to do?

We can treat this problem using an idea related to ‘cross-validation’. We remove
response yk and row k, xk = (Xk,1, ..., Xk,p)

T say, from the data and compare
the fitted values ŷ we got with all the data with the fitted values ŷ−k we get when
xk, yk are removed. Denote by y−k and X−k the remaining response and design data

with yk and xk removed. Let β̂−k = (XT
−kX−k)XT

−ky−k give the new parameter
estimates. The kth deletion, or studentised residual is

r′k =
yk − xkβ̂−k

std.err(yk − xkβ̂−k)
.

It may be shown (Problem Sheet 3 Q2) that r′k ∼ t(n − p − 1) and r′ and ŷ are
independent. Our studentised residuals have equal variance, known distribution,
and can be compared to a standard normal (using for example a qqplot). We can
plot r′ against ŷ. Any visible correlation is a sign of model mispecification, and
data points with |r′k| > 2 show misfit, and are possible outliers.

We will now derive a useful auxiliary formula for the studentised residuals. It
may be shown that

β̂−k = β̂ − (XT X)−1xk
ek

1− hkk
.

Exercise Verify this expression for β̂−k = (XT
−kX−k)−1XT

−ky−k. Quote the Wood-
bury formula

(X−kX−k)−1 = (XT X)−1 + (XT X)−1xk(1− xk(XT X)−1xk)xT
k (XT X)−1

without proof, and use the fact that XT
−ky−k = XT y −XT (0, ..., 0, yk, 0, ..., 0)T .

Exercise Using the formula above for β̂−k, show that

yk − xkβ̂−k =
ek

1− hkk
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and hence show

var(yk − xkβ̂−k) = σ2/(1− hkk).

Estimating σ2 as s2
−k, the residual standard error with the kth observation re-

moved, we have studentised residuals

r′k =
ek

s−k(1− hkk)1/2
.

Exercise The residual variance is (n − p)s2 = yT y − yT Xβ̂. The kth deletion

residual-variance is (n − p − 1)s2
−k = yT y − y2

k − (yT X − ykxk)β̂−k. Using the
formulae above, show that

(n− p− 1)s2
−k = (n− p− r2

k)s2

and hence obtain the useful form

r′k = rk

√

n− p− 1

n− p− r2
k

.

This formula is important computationally, since it shows that we can compute the
studentised residuals without making n linear regressions for the n deletions, just
using the results of the primary regression.

3.1.1. Leverage. The diagonal entries hkk = Hkk of the hat matrix are called the
leverage components. Since hkk = var(yk)/σ2 we have 0 ≤ hkk ≤ 1. Since var(ek) =
σ2(1−hkk), a point with leverage hkk close to one has low variance: since E(ek) = 0

the fitted surface xβ̂ must be pulled close to the kth response yk. If xk, yk is an

outlier with high leverage, then predictions xβ̂ for x near xk will be poor.
How big is big, when it comes to leverage? The ‘average’ leverage for a n × p

design is h̄ = p/n, as we will see shortly, so points with leverage values above 2p/n
get special attention. Since they are having more impact on the final fit than other
points, it is important that they are not outliers. The average leverage is given by
the trace of the hat matrix H , so

n
∑

k=1

hkk = trace(H)

= trace(X(XT X)−1XT )

= trace(XT X(XT X)−1),

by the cyclic permutation property of the trace trace(ABC) = trace(CAB). It
follows that

1

n

n
∑

k=1

hkk = trace(Ip)/n

= p/n.

Alternatively, trace(H) = p, as H has the eigenvalue λ = 1 repeated p times, and
the eigenvalue λ = 0 repeated n − p times, since there are p linearly independent
vectors v = e1, ..., ep satisfying Hv = v and n− p vectors u = ep+1, ..., en satisfying
Hu = 0. We saw this when we made the expansion of y in e1, ..., en in Section 2.
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3.1.2. Influence. A point with high leverage need not do much damage, if it lies
close to the fitted surface through other points - the surface would have gone close
to it anyway. Such a point is said to have high leverage but low influence. Highly
influential points shift the fitted surface far from where it would have lain if the
influential point were not included. The Cook’s distance for a point xk, yk is a
measure of influence given by the sum of the squares of the shift in fitted values
when point k is removed. Now the Cook’s distance for the kth data point is defined
to be

Ck =
(ŷ − ŷ−k)T (ŷ − ŷ−k)

ps2
.

It may be shown, using the formula in Section 3.1 above, that

Ck =
r2
khk

p(1− hkk)
.

Our intuition is that high influence occurs where there is misfit and large leverage.
The factor hkk/(1−hkk) rises with increasing leverage. The factor r2

k (standardised
residual squared) is related to misfit. A rough rule of thumb is that |rk| > 2 and
hkk are separate causes for concern, so points with Cook’s distance exceeding

Ck &
8

n− 2p

have high influence. Such points are generally outliers, and are removed from the
analysis.

3.1.3. Model checking, example.

Example 3.1. The data(swiss) dataset is described in the R documentation as
follows.

The data give a standardized fertility measure and socio-economic indicators for
each of 47 French-speaking provinces of Switzerland at about 1888.

Switzerland, in 1888, was entering a period known as the Demographic Transi-
tion, its fertility was beginning to fall from the high level typical of underdeveloped
countries. The data come from Mosteller, F. and Tukey, J. W. (1977) who give the
original source.

The swiss data frame has 47 observations on 6 variables, each of which is given
as a percentage. The columns are

Fertility a standardized fertility measure
Agriculture % of males involved in agriculture as occupation
Examination % draftees receiving highest mark on army examination
Education % draftees receiving education beyond primary school
Catholic % catholic (ie, not protestant)
Infant.Mortality % live births who live less than 1 year

Which variables are explanatory for Fertility?
We can map the percentages (0, 100) into (−∞,∞) using the logistic transfor-

mation x ← log(x/(100 − x)). Since 0 and 100 may appear, we modify this to
something like x← log((1 + x)/(101− x)), checking for linearity between mapped
variable and response.

> data(swiss)

> head(swiss) #first few rows

Fertility Agriculture Examination Education Catholic Infant.Mortality
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Courtelary 80.2 17.0 15 12 9.96 22.2

Delemont 83.1 45.1 6 9 84.84 22.2

Franches-Mnt 92.5 39.7 5 5 93.40 20.2

Moutier 85.8 36.5 12 7 33.77 20.3

Neuveville 76.9 43.5 17 15 5.16 20.6

Porrentruy 76.1 35.3 9 7 90.57 26.6

>

> sw<-swiss; #map data into R

> sw[,-1]<-log((swiss[,-1]+1)/(101-swiss[,-1]))

> n<-dim(sw)[1]; p<-dim(sw)[2]

Notice that each row (ie each data point) is named according to the Swiss province
that data point measures. The transformed data are displayed in Figure 7. We
will (i) fit a normal linear model, (ii) look for outliers, (iii) remove them, refit, and
look again for outliers, (iv) make a model reduction to something simple which
nevertheless predicts the response and finally (v) check again for outliers in the
reduced model.

> # (i) fit a normal linear model

> sw1.lm<-lm(Fertility~Infant.Mortality+Examination+Education+Catholic+Agriculture,

+ data=sw)

> summary(sw1.lm)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 76.7438 11.4611 6.696 4.44e-08 ***

Infant.Mortality 23.6269 6.9393 3.405 0.00149 **

Examination -6.2086 3.7104 -1.673 0.10188

Education -6.8316 2.6984 -2.532 0.01528 *

Catholic 0.8225 0.6183 1.330 0.19079

Agriculture -1.8702 1.6896 -1.107 0.27478

Residual standard error: 8.398 on 41 degrees of freedom

F-statistic: 12.16 on 5 and 41 DF, p-value: 2.960e-07

We can find the points of high influence and display them as in Figure 7. The R
code to do this is available in the course website in the file L7.R. We apply the
cooks.distance() function to the lm() output (and round(...,3) to 3dp). See
the top panel of Figure 8. We see that that the data points for V. De Geneve

and La Vallee have high influence. They must have high misfit (as measured by
standardised residual) or high leverage, or both. The leverages are the diagonal
entries in the hat matrix (rounded to 3 dp). See the centre panel of Figure 8. The
data points for V. De Geneve and La Vallee have high leverage in the sense that
they exceed twice the mean leverage p/n. How about misfit? The numbers are
displayed in the bottom panel of Figure 8. V. De Geneve and Rive Gauche are
above threshold (which equals 2) for high misfit. Rive Droite and La Vallee have
highish misfit. However, Rive Gauche and Rive Droite do not have high enough
leverages (0.1 and 0.178) to make them a problem. On the other hand La Vallee

has a particularly high leverage (0.379), so its milder misfit (1.7) is still a cause for
concern. There are two diagnostic functions we havnt mentioned: rstudent() and
fitted.values act on the lm() output to give studentised residuals r′ and fitted
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Figure 7. Pairs plot for Swiss fertility data. Percentage data has
been mapped monotonically to the interval (−∞,∞).
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> #V. De Geneve and La Vallee are points of high influence

> cooks.distance(sw1.lm)

Courtelary Delemont Franches-Mnt Moutier Neuveville Porrentruy Broye

0.021 0.002 0.043 0.017 0.034 0.064 0.017

Glane Gruyere Sarine Veveyse Aigle Aubonne Avenches

0.066 0.005 0.015 0.015 0.010 0.000 0.001

Cossonay Echallens Grandson Lausanne La Vallee Lavaux Morges

0.005 0.046 0.001 0.002 0.294 0.000 0.004

Moudon Nyone Orbe Oron Payerne Paysd’enhaut Rolle

0.054 0.001 0.005 0.041 0.000 0.015 0.000

Vevey Yverdon Conthey Entremont Herens Martigwy Monthey

0.003 0.010 0.029 0.025 0.016 0.006 0.007

St Maurice Sierre Sion Boudry La Chauxdfnd Le Locle Neuchatel

0.014 0.082 0.035 0.007 0.003 0.013 0.012

Val de Ruz ValdeTravers V. De Geneve Rive Droite Rive Gauche

0.007 0.000 0.464 0.118 0.081

> 8/(n-2*p)

[1] 0.229

> #V. De Geneve and La Vallee are points of high leverage

> hatvalues(sw1.lm)

Courtelary Delemont Franches-Mnt Moutier Neuveville Porrentruy Broye

0.118 0.160 0.177 0.052 0.084 0.164 0.117

Glane Gruyere Sarine Veveyse Aigle Aubonne Avenches

0.128 0.077 0.092 0.145 0.094 0.092 0.118

Cossonay Echallens Grandson Lausanne La Vallee Lavaux Morges

0.114 0.178 0.056 0.087 0.379 0.118 0.072

Moudon Nyone Orbe Oron Payerne Paysd’enhaut Rolle

0.105 0.068 0.117 0.183 0.114 0.219 0.080

Vevey Yverdon Conthey Entremont Herens Martigwy Monthey

0.052 0.069 0.223 0.109 0.138 0.117 0.102

St Maurice Sierre Sion Boudry La Chauxdfnd Le Locle Neuchatel

0.105 0.191 0.091 0.054 0.213 0.073 0.140

Val de Ruz ValdeTravers V. De Geneve Rive Droite Rive Gauche

0.057 0.149 0.332 0.178 0.100

> 2*p/n

[1] 0.255

> #V. De Geneve and Rive Gauche have higher misfit than Rive Droite and La Vallee.

> rstandard(sw1.lm)

Courtelary Delemont Franches-Mnt Moutier Neuveville Porrentruy Broye

0.967 0.281 1.099 1.380 1.485 -1.396 0.871

Glane Gruyere Sarine Veveyse Aigle Aubonne Avenches

1.651 0.600 0.934 0.722 0.771 -0.032 0.210

Cossonay Echallens Grandson Lausanne La Vallee Lavaux Morges

-0.469 -1.124 0.329 -0.386 1.700 0.103 0.553

Moudon Nyone Orbe Oron Payerne Paysd’enhaut Rolle

-1.656 -0.324 -0.459 -1.052 0.033 -0.567 -0.048

Vevey Yverdon Conthey Entremont Herens Martigwy Monthey

-0.581 -0.882 -0.776 -1.112 -0.778 -0.522 -0.590

St Maurice Sierre Sion Boudry La Chauxdfnd Le Locle Neuchatel

-0.842 1.447 1.455 0.853 -0.272 0.982 0.663

Val de Ruz ValdeTravers V. De Geneve Rive Droite Rive Gauche

0.838 -0.109 -2.365 -1.806 -2.097

Figure 8. (Top) Influence, (Centre) Leverage and (Bottom) Misfit.
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> swr1.lm<-lm(Fertility~Infant.Mortality+Examination+Education+Catholic+Agriculture,

+ data=swr)

> summary(swr1.lm)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 82.5002 12.3752 6.667 6.17e-08 ***

Infant.Mortality 26.9630 8.2567 3.266 0.00228 **

Examination -6.7927 3.5219 -1.929 0.06107 .

Education -5.9604 2.5509 -2.337 0.02469 *

Catholic 1.0270 0.6005 1.710 0.09514 .

Agriculture -2.8355 1.7661 -1.606 0.11645

Residual standard error: 7.866 on 39 degrees of freedom

F-statistic: 10.41 on 5 and 39 DF, p-value: 2.139e-06

Considering we removed just two of 47 data points, the parameters and significance
levels have changed a fair bit. For example, Examination and Catholic are now
marginally significant. Before we continue, lets repeat the diagnostics. Outliers
can mask outliers, so we may find new points of high influence in the reduced
data set. The new diagnostics are plotted in Figure 10. The qqplot was already
acceptable, and is no worse. The plot of studentised residuals against fitted values
is improved, with no discernable trend. No points of high influence have been
exposed in the reanalysis. La Chauxdfnd has now a slightly elevated leverage, but
its misfit is mild so its influence is not large. Conversely there are some points with
studentised residuals exceeding two, however we can assume their influence remains
slight.

Notice that Examination and Education have similar parameter values (around
-6 to -7). Looking at the pairs plot above they are clearly correlated (as you might
expect, thinking about the variables). This is an instance of variance inflation due
to correlation (ie, near linear dependence (Section ?? and Problem Sheet 3 Q3)).
If we remove one of these variables it is likely that the Std. Error of the other will
drop substantially. I will go straight to the simplest model that seems to work, and
make an F-test to drop Education + Catholic + Agriculture from the model.

> swr0.lm<-lm(Fertility~Infant.Mortality+Examination,data=swr)

> summary(swr0.lm)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 95.133 10.871 8.751 5.15e-11 ***

Infant.Mortality 32.982 8.009 4.118 0.000175 ***

Examination -11.811 2.100 -5.624 1.38e-06 ***

Residual standard error: 8.181 on 42 degrees of freedom

F-statistic: 21.1 on 2 and 42 DF, p-value: 4.545e-07

> anova(swr0.lm,swr1.lm)

Analysis of Variance Table
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3.2. Model Selection. In some settings we aim to filter out from some original,
possibly large, set of explanatory variables the ones that are explanatory for the
response. Where variables are correlated, this may not be possible - which of a
group of near linearly dependent variables do we drop? Physical considerations
are very important. Does the model make sense? We have to go some way down
the road to understanding the application domain in order to make sense of the
variables and their interactions, and make sensible selections of subsets of variables.

3.2.1. Model choice v. Exploratory data analysis. The easiest case is where we go
into the analysis with some preconceived hypothesis. The trees example, Example
2.2, worked that way. We modeled the tree as something like a cylinder, and that
gave us a clear hypothesis about the relation between volume, girth and height. We
fit the model and test the hypothesis.

More commonly we look at the parameters in the fitted model, observe that some
are not significant, fit a range of reduced and added-variable plots, and formulate
some hypothesis about the relations between variables. This leads to a test for
the significance of some subset of explanatory variables which is informed by the
data. We have in effect made many tests, but report just the final one. This
introduces a hazard for multiple testing, which can sometimes be corrected, see
Ripley (2002) section 6.10. If we don’t correct, and we hardly every do, then,
paraphrasing Davison (2003) section 8.7 in the subsection ‘Inference after model
selection’, “...the only covariates for which subsequent inference using the standard
confidence intervals is reliable are those for which the evidence for inclusion is
overwhelming”. It sometimes happens that we frame a hypothesis by looking at
the data, but then realise that the hypothesis has some natural physical meaning.
I can tell you that the cylinder model in the trees example (Example 2.2) was not
the first model I tried for that data, but emerged in the analysis. However, the final
model is so natural, that we could easily imagine a scientist going into the analysis
with precisely this hypothesis (we just did).

Sometimes we use automatic variable selection. This means, essentially, any
model selection procedure not guided by physical considerations for variable mean-
ing. We might search over all subsets of variables for the ‘best’ reduced model.
One choice is to look for the largest fully significant model. No variable, or set
of variables, can be dropped, and if we add variables we have a model with some
non-significant variables. There may be many such models. When the model space
is very large we may search using stepwise methods. In Backwards elimination we
start with the full set of variables, and successively drop the least significant, until
we have a fully significant set. There is a Forwards selection scheme, which adds
the next most significant variable. We sometimes sort the variables in an ANOVA
table so that the p-values on the RHS of the table show in effect the steps of forward
selection. One advantage of backwards selection, is that the initial estimator for
s2 is from the fit for all the variables, so it is not biased (upwards) by significant
variables which are not included. If forwards selection started with an estimate of
s2 based on just the one or two variables in the initial model, then it might be a
large overestimate, since variation in the response y due to variations in significant
explanatory variables would inflate s2, and levels of significance would suffer ac-
cordingly. This is the reason we use the same RSS1:p/(n− p) divisor in every row
of the F -coloumn of an ANOVA, rather than RSS1:ik

/(n− (ik − ik−1)).
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One strategy is to search over all models and optimise some measure of the
relative worth of models. The measure must somehow penalise models which are
too complex or too simple, since both are poor for prediction. The AIC is just such
a model choice criterion. The AIC-approach is set out in the next section.

Automatic methods are exposed to the hazard for multiple testing mentioned
above. If we make alot of tests on a large number of non-significant variables we
may find marginally significant variables where there are none. The approach is
justified as part of exploratory data analysis. The hope is that the method will
turn up some physically natural set of explanatory variables.

3.2.2. The AIC. One idea (there are lots, but this is core) is to consider what

happens when new data Y ′ come along. We have parameter MLE’s β̂(Y ) and
σ̂MLE(Y ) computed using the old data Y and some particular design X . If the

model is a good model, then the loglikelihood ℓ(β̂(Y ), σ̂MLE(Y ); Y ′) for β̂ and
σ̂MLE in the new data should be large. This should “usually” hold, ie, the average

over Y and Y ′ of ℓ(β̂(Y ), σ̂MLE(Y ); Y ′) should be large. If

C = −2ℓ(β̂(Y ), σ̂2
MLE(Y ); Y ′)

then we like models that make E(C) small. The expectation here is over realisations
of the old Y and new Y ′ data. Davison (2003) section 8.7.3, page 402, gives a
somewhat better motivation on this crucial point, linking the analysis to ideas of
cross-validation.

In an earlier version of these notes I set the following as an exercise. Here is
the detail. Omit this at first reading, and jump to the definition of the AIC.

We will now derive a consistent estimator, AIC, for E(C). In the following, v2

means the scalar inner product vT v. We will need one auxiliary result, namely, that

if Z ∼ χ2(ν) with ν > 2 then E(1/Z) = 1/(ν−2). Looking at ℓ(β̂(Y ), σ̂MLE(Y ); Y )
in Section 2.2, we see we have here

−2E(ℓ(β̂(Y ), σ̂MLE(Y ); Y ′)) = E

(

n log(σ̂2
MLE(Y )) +

(Y ′ −Xβ̂(Y ))2

σ̂2
MLE(Y )

)

.

We will deal with the second term first.

E

(

(Y ′ −Xβ̂(Y ))2

σ̂2
MLE(Y )

)

= E

(

(Y ′ −Xβ + Xβ −Xβ̂(Y ))2

σ̂2
MLE(Y )

)

= EY

(

nσ2

σ̂2
MLE(Y )

)

+ EY

(

(Xβ −Xβ̂(Y ))2

σ̂2
MLE(Y )

)

+ constant terms,

since EY ′((Y ′ −Xβ)2) = nσ2 and

E

(

2(Y ′ −Xβ)T (Xβ −Xβ̂(Y ))

σ̂2
MLE(Y )

)

= 0

using the Y ′ expectation. Recall that σ̂2
MLE = RSS/n. Now Xβ − Xβ̂(Y ) =

E(Ŷ )− Ŷ and Ŷ and RSS are independent, so

E

(

(Xβ −Xβ̂(Y ))2

σ̂2
MLE

)

= E

(

(E(Ŷ )− Ŷ )2
)

E

(

n

RSS(Y )

)

.



BS1A APPLIED STATISTICS 41

Using var(Ŷ ) = σ2H we have

E

(

(Xβ −Xβ̂(Y ))2
)

=

n
∑

k=1

σ2hkk

= σ2p.

Also, RSS/σ2 has a χ2(n − p) distribution, so E(σ2/RSS) = 1/(n − p − 2), using
our auxiliary result, so

E

(

(Y ′ −Xβ̂(Y ))2

σ̂2
MLE(Y )

)

=
n2

n− p− 2
+

np

n− p− 2
.

We need now to deal with the first term in the expression above for E(C). If D is
the deviance

D(Y ) = −2ℓ(β̂(Y ), σ̂2
MLE(Y ); Y )

then

E(D) = E
(

n log(σ̂2
MLE(Y )) + n

)

from Section 2.2. We have then

E(C) = E(D) +
n2

n− p− 2
+

np

n− p− 2
+ constant terms.

Expanding the last two terms in p/n about zero, we have

E(C) = E(D) + 2p + O(p/n) + terms not depending on p.

Now D(y) is an unbiased estimator for E(D), and 2p is, up to a constant term,
twice the number of parameters, so the objective function we seek to minimise in
our search for the optimal normal linear model is

AIC = −2ℓ(β̂, σ̂2
MLE ; y) + 2× number of parameters.

We derived this for normal linear models only, but it is in fact the relevant
criterion for model choice in a much wider setting. In our setting

AIC = n log(RSS/n) + 2p

where we have dropped constants, such as n, which are fixed for given data. There
is another, closely related criterion, called Mallow’s Cp, which is relevant for regres-
sion. It may be shown that

Cp =
RSS

σ2
+ 2p

is an approximation to the AIC (itself an approximation to E(C)). We do not in
general know σ2, so it is estimated using the full model (and thereby avoiding bias
from any significant variables in the full model). Mallows Cp has motivation beyond
simply approximating the AIC.

Example 3.2. Returning to the trees data in Example 2.2, I mentioned in the text
above that I tried a few models before settling on the (admittedly fairly obvious)
product form in Example 2.2. Here is part of the model exploration I did. Let yi

be the volume, xi,1 be the girth, and xi,2 the height. Denote by RSS(α, β1, β2, γ)
the residual sum of squares for the linear model

Yi = α + β1x
2
i,1 + β2xi,2 + γx2

i,1xi,2 + ǫi.
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with ǫ ∼ N(0, σ2). The following results were obtained from regression of four differ-
ent models: RSS(α, β1, β2, γ) = 179.3, RSS(α, 0, 0, γ) = 180.2, RSS(α, β1, β2, 0) =
219.4, RSS(0, 0, 0, γ) = 181. Carry out variable selection.

Here we have data for n = 31 trees, so computing the AIC’s,

> n<-31; p<-c(4,2,3,1); RSS<-c(179.3,180.2,219.4,181.0);

> n*log(RSS/n)+2*p

[1] 62.40727 58.56248 66.66419 56.69980

we can make a table of AIC’s by model

Model p RSS AIC
α, β1, β2, γ 4 179.3 62.4
α, γ 2 180.2 58.56
α, β1, β2 3 219.4 66.66
γ 1 181.0 56.70

and the winner is... the model in the last line with the least AIC, E(Yi) = γx2
i,1xi,2.

Although we did this by hand, this is in effect automatic variable selection, with no
regard for the physical content of the model. The comments above about multiple
testing apply here. An undesirable feature of the final model, is that we end up with
the interactions without the lower order terms. The product form in the original
example deals with this issue.

Note that the step() function in R, applied to the output of lm(), will carry out
automatic backwards variable selection using the AIC, and report all these numbers.
See th last sections of L7.R for another example of guided, and automatic variable
selection, using the AIC, applied to the swiss fertility data.

3.3. Two model revision strategies. The following two subsections treat a cou-
ple of discrete topics concerning model revision. Suppose that, in the course of our
diagnostic analysis we find that the errors are non-normal, or correlated. It may
be possible to make a linear transformation of the model to get iid normal mean
zero errors ǫ. We transform the data, fit, and then invert the transformation to get
results for the original model. This is weighted regression, which we look at in the
next part section.

We may find that the response yi is not linearly related to the linear predictor
Xβ. Can we find a transform which restores linearity? It would be convenient
to take a family of transformations, and choose the transform which best restores
linearity. This is the Box-Cox approach, presented in the second part section.

3.3.1. Weighted Regression. We get linear normal data with variance varying from
observation to observation. If σ2

i is the variance for the ith observation, then

Yi = Xβ + ǫi for i = 1, 2, ..., n

as before, but this time the independent errors ǫi are distributed ǫi ∼ N(0, σ2
i ).

There are three cases to consider: σ2
i unequal and unknown, σ2

i unequal and known,
and σ2

i = σ2/wi, with wi known, but σ2 unknown.
The first case cannot be treated without some assumption on the joint distribu-

tion of the σi, since we have a variance parameter for each datum, which we cannot
estimate. The second case can be treated in the same framework as the third (see
the 2nd exercise in Problem sheet 1 where σ2 is known).

What is the motivation for considering the third case? If, for i = 1, 2, ..., n, Yi is
actually the outcome of ni independent measurements, Yi,j ∼ N(xiβ, σ2), then we
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may pool the data, so Yi = n−1
i

∑

j Yi,j so that var(Yi) = σ2/ni. This works for the
more general case where Yi,j are iid for j = 1, 2, ..., ni, with mean xiβ and variance
var(Yi,j) = σ2, but not normal. By the CLT, the approximation Yi ∼ N(xiβ, σ2/ni)
may be good.

We can map the weighted variance problem onto our original problem. If W =
diag(w1, ..., wn) (ie, an n× n matrix with square-roots of w’s on the diagonal, and
otherwise zero) and we define ‘data’ Y ′ = W 1/2Y and a ‘design’ X ′ = W 1/2X then

Y ′ = X ′β + ǫ′

with ǫ′ ∼ N(0, σ2In). We are back to our standard problem. The weighted least

squares estimators for β and σ2 are β̂ = (XT WX)−1XT WY , and s2 = (Y −
Xβ̂)T W (Y −Xβ̂)/(n− p).

Exercise suppose Y = Xβ+ǫ, and the errors are correlated, with ǫ ∼ N(0, Σ) with
Σ a n× n positive definite covariance matrix. Give formulae for the weighted least

squares estimators β̂ and s2 for β and σ2. Ans: Suppose there is a transformation L
such that var(Lǫ) = σ2In for some σ2 > 0. Now it is the same as the last problem.
Is there such a transformation?

Example 3.3. The monthly prices quoted in Example 2.4 and Example 2.5 are av-
erages. The number of houses used to form the averages are given (as a scatterplot)
in the lattice plot in Figure 4. The numbers are quite large (60 is typical) so we
might expect the central limit theorem to give us averages which are approximately
normally distributed, scattered about a running (straight-line regression) mean.
Let wi = sales[i]. I return to the house types Semi-Detached and Terraced and
the model of Example 2.4, but weighted,

yk ∼ α + αT gk,T + γMxk,M + ǫk, ǫk ∼ N(0, σ2/wi),

and I am looking to remove all the variance variation by house type and month
by taking into account the sales weighting. We can fit this model in R using the
weights option in the lm() function. We set weights = sales, and otherwise the
variables are set up as before.

> #weighted by number of sales

> ohp.wlm<-lm(price~month+type,weights=sales,data=ohp)

> summary(ohp.wlm)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 157.94603 3.29306 47.963 <2e-16 ***

month 1.70720 0.05509 30.987 <2e-16 ***

typeTerraced -1.95419 3.06955 -0.637 0.525

...

In this fit Semi-Detached gives the baseline. So, has our weighting corrected the
variance? We have been using R to plot residuals against fitted values, as a check
for goodness of fit. Looking at Figure 11. We do see an improvement in the
pattern of residuals, so we have a ’better’ fit. The residuals and fitted values
should be independent and the residuals should have homogeneous variance. There
is a funnel-shape structure to the scatter plot at left in Figure 11. The scatter
plot at right is somewhat more even. The weighting brings the outlier into the
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Figure 11. LEFT: studentised residuals against fitted values and
qqplot for the unweighted fit. RIGHT the fit weighted by sales.
Weighting by sales improves the variance of the terraced and semi-
detached properties.

normal range (sales have fallen lately - the weighting corrects the recent part of
the variance trend - but there is still some increase in variance with fitted values
at small weighted fitted values - this is the trend to increased variance with price,
which we havnt treated).

Note the scaling on the x and y axes at right in Figure 11. We have Ŷ ′ =

W 1/2Xβ̂ so the weighted residuals e′ = Y ′ − Ŷ ′ = W 1/2(Y − Xβ̂) have variance
matrix σ2(In − H) with H = W 1/2X(XT WX)−1XT W 1/2. When we make a

weighted regression, β̂ determines the fitted values in both weighted and unweighted

coordinate systems. R returns the fitted values Ŷ = Xβ̂ and residuals e = (Y −Xβ̂)

in the unweighted coordinates rather than Ŷ ′ and e′. However, the standardised
and studentised residuals are the same in the two coordinate systems. We plot
the studentised residuals r′(e) against the fitted values ŷ since they have the same
diagnostic properties (independence and unit variance) as plotting r′(e′) against ŷ′

3.4. The Box-Cox family of transformations. Suppose we have data y, X1, ..., Xp

with yk ≥ 0. The response may not be a linear function of the linear predictor.
A simple transformation is often enough to set things right. The family of trans-
formations y′

k = (yλ
k − 1)/λ for k = 1, 2, ..., n can fit in your pocket, and includes
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many of the transformations modeling actually leads us to use. The idea is to find
a λ value that linearises the data.

Exercise Let g(z; λ) = (zλ − 1)/λ for z ≥ 0. Show that g(z) = 1 − z−1, 2z1/2 −
2, z−1, (z2−1)/2 and g(z)→ log(z) for λ = −1, 1/2, 1, 2 and as λ→ 0 respectively.
Notice that, if X1 = 1n,1 so β1 is the intercept, then the transform y′

k = yλ
k (as

opposed to y′

k = (yλ
k−1)/λ) leads to MLE’s for the parameters of y′ = Xβ′+ǫ which

differ from those above by a scale and shift, β′

1 = β1λ + 1, β′

i = λβi, i = 2, ..., p.
If we fit y′ = Xβ + ǫ for ǫ ∼ N(0, Inσ2), with xk the kth row X , then the

likelihood is

L(β, σ2, λ; y′) = (2πσ2)−n/2 exp

(

− 1

2σ2

∑

k

(y′

k − xT
k β)2

)

.

To get the likelihood for λ in terms of y, we make the change of variables y′

k =
g(yk; λ) with Jacobian gz(z; λ) = zλ−1.

Exercise Make the change of variables, and calculate the log-likelihood, ℓ(β, σ2, λ; y)

in terms of y. Show that the MLE’s for β and σ2 are β̂′ = (XT X)−1XT y′ and
σ̂2

MLE = (y′ −Hy′)T (y′ −Hy′)/n, with H = X(XT X)−1XT and y′ = y′(y, λ) (ie
all as usual, but the ‘data’ y′ depends on λ). Substitute these into the likelihood,
and show that the MLE for λ is the argument maximising

ℓ(β̂, σ̂2
MLE , λ; y) = −n

2
log(σ̂2

MLE(y; λ)) + (λ− 1) log((y1y2...yn)).

In order to maximise ℓ(β̂, σ̂2
MLE , λ; y) as a function over λ, we simply evaluate it at

a range of values. In the 4th problem sheet you will compute a confidence interval
for λ at level α.

Having computed λ̂ and a confidence interval for λ we usually fix on the nearest

readily interpreted λ-value in the interval. We then recompute the fit (for β̂ and s2

etc) conditioned on this estimate.

Example 3.4. The putting data records the fraction of successful putts as a function
of distance in feet. Gelman and Nolan (2001) model these data. See

http://www.stat.berkeley.edu/users/nolan/Papers/golfnew.ps.

We often transform proportion data as log(p/(1 − p)) since this (the log-odds) is
the link function for a Bernoulli rv. It is a monotone map from (0, 1) to (−∞,∞).
In this case the odds of failure (1 − p)/p is the natural object (it increases with
distance). A log turns out to be the wrong transform for linearity. Box-Cox gives
a linear response.

> putts<-data.frame(2:20,

+ c(0.93,0.83,0.74,0.59,0.55,0.53,0.46,0.32,0.34,0.32,

+ 0.26,0.24,0.31,0.17,0.13,0.16,0.17,0.14,0.16)

+ )

> names(putts)<-c(’Dist’,’Prop’)

> head(putts)

Dist Prop

1 2 0.93

2 3 0.83

3 4 0.74
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4 5 0.59

5 6 0.55

6 7 0.53

The data are plotted in the top left panel of Figure 12. The λ value was estimated
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Figure 12. Putting, fraction successful puts as a function of putt
length in feet. Box-Cox analysis at lower left, otherwise as labeled.

by maximising the likelihood, as above.

> y<-(1-putts$Prop)/putts$Prop

> x<-putts$Dist

> putts.bc<-boxcox(y~x)

This generates the graph in Figure 13, and from the graph we see that the MLE
is at around 0.46 but the CI covers λ = 0.5, which is easier to deal with in later
modeling. We transform the data. If distance is x = Dist and the response is
y = (1 − p)/p for p = Prop then we want

√
y = β1 + β2x + ǫ (2

√
y − 2 = ... is not

materialy different).

> putts.lm<-lm(sqrt(y)~x)

> summary(putts.lm)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.14342 0.09818 1.461 0.162
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Figure 13. Box-Cox analysis of the putts data.

x 0.12293 0.00799 15.386 2.07e-11 ***

...

The resulting fit is plotted in the lower left panel of Figure 12. The lower right
panel shows the log-transformed response, which is clearly not suitable.

Notice that β1 (the (Intercept) row in the summary() output) is not significant.
Enforcing β1 = 0 is natural on physical grounds also, as the odds of failure should
go to zero for very short puts. We conclude that the odds of putt-failure increase
as the square of the distance.
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4. Generalised Linear Models

We have tried just about every possible transformation of the response and ex-
planatory variables in order to get a normal linear model. However, we encounter
data for which the response is binary valued, categorical, or in some other way
incorrigibly non-normal. How should we set up a model, estimate parameters and
confidence intervals, and carry out variable selection? The GLM framework gener-
alises normal linear models in a natural way. Inference for GLM’s has some familiar
stages.

4.1. Exponential Families. A probability mass function for a scalar rv y is an
natural linear exponential family of order one if it can be written

f(y|θ) = exp(yθ − κ(θ) + c(y))

for y ∈ Ω the support of f . In this pmf, κ is a normalising constant, since
∑

y∈Ω

f(y|θ) = 1 ⇒ exp(κ(θ)) =
∑

y∈Ω

exp(yθ + c(y)).

The parameter space, θ ∈ Ξ is the set

Ξ = {θ; κ(θ) <∞}
of values which make f a probability. The same definition applies for a probability
density, with

exp(κ(θ)) =

∫

y∈Ω

exp(yθ + c(y)) dy.

The function κ(θ) is the cumulant generating function for a probability density
proportional to exp(c(y)).

For the record, the exponential family of order q > 1 has the form

f(y|θ) = exp(g(y)T θ(w) − κ(w) + c(y)),

for y ∈ Ω possibly a vector, g : Ω→ Rq a vector of q linearly independent functions,
and θ(w) a vector of q functions of the basic parameter vector w of dimension less
than or equal q. The random vector g(y) is called the natural observation for
the family. The parameterisation θ(w) might disallow θ that give finite κ. If the
parameterisation is simply exp(g(y)T θ−κ(θ)+c(y)), for all θ that make this function
a pmf (or pdf) then we have a natural exponential family. If the parameter space
Ξ is open, it is regular.

There are many useful general results for inference under exponential family
models. Most of the models you know fit within this framework.

Example 4.1. In the Binomial distribution Binomial(m, π) the pmf Pr(Y = y) is

Cm
y πy(1 − π)m−y = exp(y log(π/(1− π)) + m log(1 − π) + log(Cm

y )).

This is a natural exponential family of order one, with natural parameter the log
odds θ = log(π/(1−π)), natural observation y ∈ Ω = {0, 1, 2, ...}, κ = − log(1−π))
and c(y) = log(Cm

y ).

Example 4.2. In the Normal distribution N(µ, σ2) the pdf f(y|µ, σ2) is

(2πσ2)−1/2 exp(−(y−µ)2/2σ2) = exp(yµ/σ2−µ2/2σ2− (1/2) log(2πσ2)−y2/2σ2).

If σ2 is known (so, it is not a parameter indexing members of the family) then this
is a natural exponential family of order one, with natural parameter the θ = µ/σ2,
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natural observation y ∈ R, κ = µ2/2σ2 − (1/2) log(2πσ2) and c(y) = −y2/2σ2. If
σ2 is unknown we have a natural exponential family of order two, with g(y)T θ =
(y,−y2/2)(µ/σ2, 1/σ2)T which is natural since θ ∈ R× (0,∞).

4.2. GLM, setup. A normal linear model has three parts: a deterministic part
η = Xβ, a stochastic part Y ∼ N(µ, σ2), and a link between the stochastic and
deterministic parts, µ = η. This kind of language is overkill for such a simple
model.

The GLM has a stochastic part, Yi ∼ f , for i = 1, 2, ..., n which we insist has the
form

f(yi|θi, φ) = exp

(

yiθi − κ(θi)

φ
+ c(yi; φ)

)

.

If the scale parameter φ is known, this is a natural exponential family (with natural
parameter θ/φ).

It has a deterministic part ηi = xT
i β (as before xi is the p×1 vector of explanatory

variables for the ith response and β is a p×1 parameter vector). The linear function
ηi(β) is called the linear predictor. If η = (η1, ..., ηn)T and X is a n×p matrix with
rows xT

i , then η = Xβ.
A GLM has a third part, which links the stochastic and deterministic parts.

If µi = E(Yi), then g(µi) = ηi. Here g, the link function, is a smooth invertible
function of the mean.

When we find a GLM to modl given data, we make these three modeling choices.
The purpose of the link function is to map the linear predictor into the scale of the
response. For example, if Yi is a binary rv, then E(Yi) is in fact a probability, so
we consider invertible (ie monotone) link functions g that map R→ (0, 1).

4.2.1. Moments. The mean µi is a function of θi. Since
∫

(y/φ)n exp (yθi/φ + c(y; φ)) dy =
dn

dθn
i

exp(κ(θi)/φ)

we have

E(Yi) = exp(−κ(θi)/φ)

∫

y exp (yθi + c(y; φ)) dy

= exp(−κ(θi)/φ)φ
κ′(θi)

φ
exp(κ(θi)/φ)

= κ′(θi),

so µi = κ′(θi). For the variance,

var(Y ) = E(Y 2
i )− E(Yi)

2

= exp(−κ(θi)/φ)φ2 d2

dθ2
i

exp(κ(θi)/φ)− (κ′)2

= exp(−κ(θi)/φ)φ2 d

dθi
(κ′ exp(κ(θi)/φ)/φ)− (κ′)2

= φκ′′(θi),

and so var(Y ) = φκ′′(θi). Since var(Y ) > 0, we have κ′′(θi) > 0, so dµi/dθi > 0
and µi is a strictly increasing function of θi.

We have seen that the mean of Yi increases with θi. Since both µi = κ′(θi; φ) and
g(µi) = ηi are monotone functions, we must have an invertible relation θi = θ(ηi)
between the original parameter θi and the linear predictor.



50 GEOFF NICHOLLS

We define a variance function V (µi) relating the variance var(Yi) and the mean,
µi as

var(Yi) = φV (µi).

Exercise Show that var(Yi) = φκ′′(θi) and hence V (µi) = κ′′(κ′−1(µi)).

Exercise Show that dθk/dµk = 1/V (µk).

One particularly simple possibility is that θi = ηi. This arises when κ′−1(g−1(ηi); φ) =
ηi, that is, if g−1(x) = κ′(x), corresponding to the canonical choice of link function

g(µi) = κ′−1(µi).

4.3. Inference for GLM’s.

4.3.1. Likelihood. One of the key ideas of modeling with GLM’s is that we start
with one parameter θi for each observation yi i = 1, 2, ..., n. We have knitted
them all together by modeling θi = θ(xiβ) in terms of the set of parameters,
β = (β1, ..., βp)

T . There are now just p parameters (with p ≪ n often, as in
Section 2) in the GLM. Since E(Yi) = g−1(xiβ) is a monotone function of xiβ, we
are back to the situation where we have p explanatory variables xi = (xi,1, ..., xi,p)

T

for the ith response and, for positive βj , the mean response Yi increases as xi,j goes
up. Significant explanatory variables generate significant shift in the mean response.

Since the rv Yi are iid, the log-likelihood for β is

ℓ(β) =

n
∑

i=1

yiθi − κ(θi)

φ
+ c(yi; φ),

with θi = θi(β). The MLE for β is the solution to the p equations dℓ/dβj = 0. There
is no general convenient closed form for the MLE. However, it may be computed
numerically, via the iteratively re-weighted least squares algorithm.

4.3.2. Iteratively Re-weighted Lest Squares. Suppose we want to find z∗ ∈ R such
that f(z∗) = 0 for some continuously differentiable function f : R → R. The
Newton Raphson algorithm is an iteration z0, z1, ... which, under certain condi-
tions, converges to z∗. We start with z = z(0) and approximate f(z) ≃ f(z(0)) +
(df/dz|z(0))(z − z(0)). We seek z = z(1) so that f(z(1)) = 0. The local linear ap-
proximation for z(1) is z(1) = z(0) − (df/dz|z(0))−1f(z(0)), and we can iterate this
to improve the approximation,

z(i+1) = z(i) − (df/dz|z(i))−1f(z(i)), i = 0, 1, 2, ...

In order to solve df/dz = 0 numerically, we replace f by df/dz. The N.R. iteration
becomes

z(i+1) = z(i) − (d2f/dz2|z(i))−1df/dz(z(i)), i = 0, 1, 2, ...

This sequence may fail to converge. If f is convex then the sequence converges for
some z0 sufficiently close to z∗. The multivariate case z = (z1, z2, ..., zp)

T is given
in terms of the Hessian of f : Rp → R. Let ∂f/∂zT = (∂f/∂z1, ∂f/∂z2, ..., ∂f/∂zp)
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be the row vector of derivatives. Let

∂2f

∂z∂zT
=















∂2f
∂z2

1

∂2f
∂z2∂z1

... ∂2f
∂zp∂z1

∂2f
∂z1∂z2

∂2f
∂zp∂z2

...
...

∂2f
∂z1∂zp

∂2f
∂z2∂zp

... ∂2f
∂z2

p















give the Hessian for f(z). In order to find an extremum we seek z∗ ∈ Rp to solve
the p equations ∂f/∂z = 0. The local linear approximation for ∂f/∂z at z = z(0)

is
∂f

∂z
≃ ∂f

∂z

∣

∣

∣

∣

z(0)

+
∂2f

∂z∂zT

∣

∣

∣

∣

z(0)

(z − z(0)).

Notice that if f is a quadratic in z then “≃” is “=”. If ∂2f/∂z∂zT is invertible,
then our multivariate Newton Raphson iteration for an extremum of f is

z(i+1) = z(i) −
(

∂2f

∂z∂zT

∣

∣

∣

∣

z(i)

)−1
∂f

∂z

∣

∣

∣

∣

z(i)

.

This converges to z∗ in a single step, if f is a quadratic function of z.
We would like to find the maximum of the log-likelihood. In our setting, with

φ known, we have ℓ = ℓ(β; y). We seek β̂ to solve ∂ℓ(β̂; y)/∂β = 0. The Newton
Raphson iteration for β is

β(i+1) = β(i) −
(

∂2ℓ

∂β∂βT

∣

∣

∣

∣

β(i)

)−1
∂ℓ

∂β

∣

∣

∣

∣

β(i)

.

This iteration might be applied to any twice differentiable log-likelihood. It (ie
β(i)) will converge to the MLE if started sufficiently close to the MLE (since the
likelihood is quadratic in the neighborhood of the MLE). Notice that, if the log-
likelihood is a quadratic function function of the parameter β as is the case for
regression with a normal linear model (see Section 2.1) then this iteration must
converge in a single step.

The quantity

J(y) = −∂2ℓ/∂β∂βT

is the observed information, whilst

I = −E(∂2ℓ/∂β∂βT )

is the expected information. For a GLM the expected information is often more
convenient to work with. It has a special role in the inference, since the difference

β − β̂ between the true parameters vector and the MLE becomes normal,

(β − β̂)
D→ N(0, I−1(β)),

asymptotically in n. Estimating the variance I(β) using I(β̂) or J(y) are both valid,
since both converge to I (see Davison (2003) Section 4.4.2). The revised iteration
is

β(i+1) = β(i) + I−1 ∂ℓ

∂β

∣

∣

∣

∣

β(i)

.
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For a GLM we can simplify things a bit. In that case

∂ℓ

∂βi
=

∑

k

∂ℓ

∂ηk

∂ηk

∂βi

=
∑

k

∂ℓ

∂θk

dθk

dηk
xk,i

=
∑

k

yk − µk

φ

dθk

dµk

dµk

dηk
xk,i

=
∑

k

yk − µk

g′(µk)φV (µk)
xk,i.

since g(µk) = ηk and using the exercise above for dθk/dµk. In vector notation, with
and u = ∂ℓ/∂η, so u = (u1, ..., un)T with uk = (yk − µk)/g′(µk)φV (µk),

∂ℓ

∂β
= XT u.

Also,

∂2ℓ

∂β∂βT
=

∂

∂β

∂ℓ

∂ηT
X

= XT ∂2ℓ

∂η∂ηT
X,

so the expected information is

I = XT WX,

where W = −E(∂2ℓ/∂η∂ηT ) is a diagonal matrix. We can see it is diagonal, as uk

is a function of µk only, and µk = g−1(ηk) is a function of ηk only. The diagonal
entries are

Wkk = −E

(

∂2ℓ

∂η2
k

)

=
1

g′(µk)2φV (µk)
.

Exercise show that E(∂ℓ/∂θk) = 0 and use it to show that

E

(

∂2ℓ

∂η2
k

)

= E

(

[

dθk

dηk

]2
∂2ℓ

∂θ2
k

)

.

Now show that

−E

(

∂2ℓ

∂θ2
k

)

= E

(

[

∂ℓ

∂θk

]2
)

,

and use this result to calculate Wkk as above.

Now the Newton Raphson iteration is

β(i+1) = β(i) + (XT W (i)X)−1XT u(i),
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with W (i) and u(i) evaluated at β(i). This can be written

β(i+1) = (XT W (i)X)−1XT W (i)(Xβ(i) + (W (i))−1u(i))

= (XT W (i)X)−1XT W (i)z(i)

where z(i) = (z
(i)
1 , ..., z

(i)
n )T is the iterated ‘data vector’,

z
(i)
k = [Xβ(i)]k + g′(µ

(i)
k )(yk − µ

(i)
k ).

This is iteratively reweighted least squares. If you look back at Section 3.3.1 you

will see that if y = Xβ + ǫ with ǫ ∼ N(0, W−1) then β̂ = (XT WX)−1XT Wy. The

IRLS algorithm for estimation of the MLE for a GLM via the sequence β(i) → β̂
as i→∞ is

Start with µ(0) = y so Xβ(0) = η(0) = g(µ(0)) = g(y), and z(0) = g(y) and
W (0) = diag(g′(y)2φV (y))−1. For i = 0, 1, 2, ...,
(a) set β(i+1) = (XT W (i)X)−1XT W (i)z(i) (ie β(i+1) are the MLE param-

eter values in the weighted regression of z(i) on X).
(b) η(i+1) = Xβ(i+1), µ(i+1) = g−1(η(i+1)),

z(i+1) = η(i+1) + g′(µ(i+1))(y − µ(i+1))

and

W (i+1) = diag

(

1

g′(µ(i+1))2φV (µ(i+1))

)

.

Exercise Show that if the link function is the canonical link function then uk =
(yk − µk)/φ, Wkk = V (µk)/φ and

zk = [Xβ]k +
(y − µk)

V (µk)
.

Exercise Compute these quantities for the case of regression with a normal linear
model with σ2 known. Show that φ = σ2, V (µ) = 1, W = In/σ2 and z = y, and
verify that IRLS converges in one step for regression with a normal linear model.

4.3.3. Variance of MLEs. Recall that if β̂ is an MLE then, asymptotically in n,

(β − β̂)
D→ N(0, I−1),

with I the expected information matrix, I = −E(∂ℓ/∂β∂βT ). We have seen that,
for a GLM, I = XT WX . This is handy, as (XT WX)−1 is computed in the course

of the IRLS algorithm. We have variances var(β̂i) ≃ (XT WX)−1
ii which are good

at large n, with Ŵ = W (µ̂) computed in the IRLS.

Exercise Show that if the link function is the canonical link function then

β̂
D→ N(β, φ(XT diag(V (µ1), ..., V (µn))X)−1).

Exercise Check this reduces to something familiar for the case of regression with
a normal linear model.
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This gives us a test for βi = 0, the significance of a single GLM parameter, as

β̂i
√

I−1
ii

D→ N(0, 1)

gives us

β̂i
√

Î−1
ii

D→ N(0, 1)

at large n, with Î−1
ii estimated using Î = I(µ̂) or Î = J(y). The std.dev, Z-value

and p-value reported by R in the following GLM, logistic regression, are computed

using the approximate standard normal distribution for Z = β̂i/
√

(XT WX)−1
ii

with W the final weight matrix of the converged IRLS iteration.

4.4. Logistic regression.

Example 4.3. Model setup. The Challenger data give O-ring failures as a function
of temperature.

> #From Casella and Berger Statistical Inference (2002)

> #Challenger O-ring failures (fail=1, OK=0, temp in deg. F)

> ch.dat<-data.frame(

+ fail=c(1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0),

+ temp=c(53,57,58,63,66,67,67,67,68,69,70,70,70,70,72,73,75,75,76,76,78,79,81))

> head(ch.dat)

fail temp

1 1 53

2 1 57

3 1 58

4 1 63

5 0 66

6 0 67

Now if yi = fail[i] and xi = (xi,1, xi,2) = (1, temp[i]) (so we have an intercept),
then we model yi ∼ Bernoulli(πi) with πi the probability for failure a function of
temperature. The observation model for yi has pmf

πi
yi(1− πi)

1−yi = exp(yi log(πi/(1− πi)) + log(1− πi)),

so θi = log(πi/(1 − πi)) is the natural parameter, φ = 1 and κ(θi) = log(1 + eθi).
Since E(Yi) = πi, we have µi = πi.

The linear predictor is ηi = β1 + β2xi,2. We need to link this to the mean. The
logistic link

log(µi/(1− µi)) = ηi

is natural here, since this is equivalent to

πi =
exp(β1 + β2xi,2)

1 + exp(β1 + β2xi,2)
.

The probability for failure is a logistic function of temperature. As we vary β1

and β2 we move the threshold for failure to different temperatures, and change
how sharply the onset occurs. We can thereby choose β1 and β2 to fit the binary
responses (see Figure 14 below). This is logistic regression, modeling the probability
for success for a binary response as logistic function of a linear predictor.
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Since µi = κ′(θi) and κ′(θi) = eθi/(1 + eθi), we have

κ′−1(µi) = log(µi/(1− µi)),

so the link function g(z) = log(z/(1− z)) that we chose when we set up the logistic
regression was in fact the canonical link. The question “is temperature explanatory
for O-ring failure” is answered by a test for β2 6= 0 significant (in fact the conjecture
is that failure probability increases with decreasing temperature, so the test will
check for β2 < 0 significant).

Example 4.4. Fitting a logistic model. We now fit the logistic regression model we

proposed in to the Challenger data. R uses IRLS to compute β̂ and reports the
number of (score) iterations it took to get convergence.

The log-likelihood for β in the example above, with our choice of the canonical
link, is

ℓ(β) =
n
∑

i=1

yiηi − log(1 + eηi)

with n = 23 and ηi = β1 + β2xi,2. Fitting,

> ch.glm<-glm(fail~temp, data=ch.dat, family=binomial())

> summary(ch.glm)

Call:

glm(formula = fail ~ temp, family = binomial(), data = ch.dat)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.0611 -0.7613 -0.3783 0.4524 2.2175

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 15.0429 7.3786 2.039 0.0415 *

temp -0.2322 0.1082 -2.145 0.0320 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 28.267 on 22 degrees of freedom

Residual deviance: 20.315 on 21 degrees of freedom

AIC: 24.315

Number of Fisher Scoring iterations: 5

we see that the probability for failure decreases with increasing temperature. The
number of scoring iterations is the number of iterations of of the IRLS algorithm
we described above. We will define residual deviance shortly.

The values of the probability for failure at the observation points xi are in effect

the “fitted values”, µ̂i = g−1(xiβ̂), rather like ŷi in our normal linear model. Since
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π̂(η) = π(η̂), we can evaluate the function

π̂(t) =
exp(β̂1 + β̂2t)

1 + exp(β̂1 + β̂2t)
,

to get the estimated probability for failure as a function of temperature. The

predict() function takes the glm() output, and some x values and returns xT β̂.

With the option type=’response’ we get g−1(xT
i β̂), or in this case π̂(xiβ̂). We

can evaluate this function at other x-values using the newdata option. We take a
sequence of values of the explanatory variable temp, and plot π against temperature
in Figure 14.

> ch.prob<-predict(ch.glm,newdata=data.frame(temp=40:90),type=’response’)

> plot(40:90,ch.prob,type=’l’); #the solid line

and I omit the R for the plotting of the points, see L10.R.
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Figure 14. O-ring failure data (points) with fitted probability for
failure (curve).

The p-value for β2 = 0 is 0.032, supporting the view that temperature is explana-
tory for O-ring failure. How is this computed? The reported standard errors are

var(β̂i) ≃ (XT ŴX)−1
ii for i = 1, 2, ..., p. The quoted Z value is β̂i/

√

(XT ŴX)−1
ii

which has an approximate N(0, 1) distribution. The p-value for the test for β2 < 0
is 0.016.
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Exercise Verify that V (µi) = κ′′(θi)/φ = µi(1− µi), and hence

Ŵ = diag(µ̂1(1− µ̂1), ..., µ̂n(1− µ̂n))

is the last weight matrix of the IRLS. Check the quoted std errs. Ans:

> # check we understand what the reported std errs are

> p<-predict(ch.glm,type=’response’)

> X<-model.matrix(fail~temp, data=ch.dat)

> sqrt(diag(solve(t(X)%*%diag(p*(1-p))%*%X)))

(Intercept) temp

7.3786364 0.1082365

Example 4.5. Odds and the odds ratio. The quantity π/(1 − π) is the odds of
success (O-ring failure, but Bernoulli success, ie Y = 1). For a single generic binary
response Y with explanatory variables x with µ = E(Y ) and π = Pr(Y = 1) = µ,
the canonical link g(µ) = η for logistic regression gives log(π/(1 − π)) = xT β, and

so the odds of success, O = π/(1−π) say, are estimated as Ô = O(xT β̂), so we have

Ô = exp(xT β̂). This gives the interpretation of β̂i in logistic regression: β̂i gives
the change in log odds for success (the outcome Y = 1) when the corresponding
explanatory variable changes xi → xi + 1. For example, for the O-ring data, if
x = (x1, x2)

T and x′ = (x1, x2 + 1), so the temperature goes up a degree, and

Ô = O(xT β̂) and Ô
′

= O(x′T β̂), then

Ô

Ô
′

= exp(β̂2).

In this example we estimated β̂2 ≃ −0.2321627 so the odds of O-ring failure go
down by around exp(−0.2321627) ≃ 0.7928171 for an increase in the temperature
by one deg. F.

On the day of the disaster it was unusually cold, 31 deg. F. What is our predicted
probability for O-ring failure that day?

> #launch at temp=31 deg F - estimate for the probability of failure:

> predict(ch.glm,newdata=data.frame(temp=31),type=’response’)

[1] 0.9996088

>

The estimated odds of O-ring failure are 1:1 at a temperature around 64.79465

deg F (since Ô = 1 when β̂1 + β̂2x2 = 0 and solve for x2). How much higher are
the odds of failure at 31 def F? This must be 0.9996088/(1− 0.9996088)≃ 2555, or

exp(β2)
∆temp which is 0.7928171(31−64.79465).

Example 4.6. Binomial data in a 2 way table The data in Table 3 are taken from
Dr Lunn’s 2007 lecture notes, and give the number of men and women smokers and
non-smokers in a particular industry. Table 3 gives smoking information for 2916
men and 2503 women. In a binomial model with p the probability for a man to be
a smoker and q the probability for a woman to be a smoker, the MLE’s for p and q
are p̂ = n11/(n11 + n12) ≃ 0.71 and q̂ = n21/(n21 + n22) ≃ 0.45. How much higher
are the odds for a man to be a smoker (smoker given man) than for a woman to be
a smoker (smoker given woman)? The MLE for the odds ratio is a function of the
MLEs for p and q, ie [p̂/(1− p̂)]/[q̂/(1− q̂)] = (n11/n12)/(n21/n22) ≃ 2.92.

We will use these data to illustrate the Binomial GLM. We have two observations,
y1 = 2059 ‘successes’ from m1 = 2916 trials and y2 = 1130 successes from m2 =
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Smoking
Sex Y N Tot
M 2059 857 2916
F 1130 1373 2503

Tot 3189 2230
Table 3. Two way table for smoking and gender, giving the num-
ber of subjects in each category.

2503 trials. Let πi give probability for probability for ‘success’ (here, smoker) for the
ith group of trials (so π1 = p and π2 = q). The likelihood for a single observation
is

f(yi|mi) = exp(yi log(πi/(1− πi)) + mi log(1− πi) + log(Cmi

yi
)).

The natural observation is yi, the number of successes in the ith group of trials,
the natural parameter is again θi = log(πi/(1 − πi). κ(θi) = mi log(1 + eθi), and
φ = 1.

We are interested in the explanatory variable ’Sex’. Let x1,2 = 1 and x2,2 = 0,
so x2 is the dummy indicator variable for the M level of the categorical variable Sex.
Level F is the baseline. The linear predictor is ηk = β1 + β2xk,2 and the design
matrix is

X =

(

1 1
1 0

)

.

As for the binary data, model the probability as a logistic function of the indicator
variable. Here πk = µk/mk, so

log(µk/(mk − µk)) = β1 + β2xk,2.

Since θk = ηk, this is again the cannonical link function, with

π1 = exp(β1 + β2)/(1 + exp(β1 + β2))

π2 = exp(β1)/(1 + exp(β1)).

We can fit these data in R using glm() again.

> # smoking data from Dunn 07

> smk<-data.frame(S=c(2059,857),NS=c(1130,1373),Sex=c(’M’,’F’))

> # response is two columns ’#successes’ S and ’#failures’ NS

> smk

S NS Sex

1 2059 1130 M

2 857 1373 F

>

> #The design matrix has an intercept and an indicator for Sex==M

> model.matrix(cbind(smk$S,smk$NS)~Sex,data=smk)

(Intercept) SexM

1 1 1

2 1 0

>

> #fit response as binomial with Sex explanatory

> smk.glm<-glm(cbind(smk$S,smk$NS)~Sex,data=smk,family=binomial)
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> summary(smk.glm)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.47132 0.04353 -10.83 <2e-16 ***

SexM 1.07132 0.05715 18.75 <2e-16 ***

...

The estimated change in the log odds when we move from F to M (so xk,2 → xk,2+1)

is β̂2 = 1.07 which is an increase by a factor of exp(1.07132) ≃ 2.92.

4.5. Model choice. We have seen how to test for the significance of a single
GLM parameter βi, using the asymptotically standard normal distribution of Z =

β̂i/
√

(XT WX)−1
ii .

How do we test for the significance of a group of variables? We use the likelihood
ratio test. For regression with the normal linear model we managed to get an exact
test, by writing the LRT statistic as a monotone function of a statistic, F , with
a distribution we have exactly. For regression with GLM’s, we stick to the LRT
statistic, and accept a test based on the asymptotic distribution of this statistic.

There are two important models ‘above’ and ‘below’ our model. The saturated
model unlinks the θi. They were bound by the constraint g(µi) = xT

i β on the
means. In the saturated model we have one parameter θi for each response yi. The

MLE θ̂
(s)
i for θi in the saturated model is just θ̂

(s)
i = argmaxθ f(yi|θi).

Exercise Suppose Yi ∼ Binomial(πi, mi). Show that π̂
(s)
i = yi/mi so that θ̂

(s)
i =

log(yi/(mi − yi)) and the log-likelihood for the saturated model is

ℓ(θ̂
(s)
i ; y) =

∑

i

yi log(yi/(mi − yi))) + mi log(1− yi/mi).

The other model of interest is the null model, in which β2 = ... = βp = 0, with
g(µi) = β1 so we just have the intercept in the linear predictor. The means are all

equal so there is a single common natural parameter θ. Let θ̂(0) be the MLE for
the natural parameter of the null model.

Exercise Show that, for the binomial model, π̂(0) = (
∑

i yi)/(
∑

i mi) = ȳ/m̄ so

that θ̂(0) = log(ȳ/(m̄− ȳ)) and the log-likelihood for the null model is

ℓ(θ̂(0); y) = nȳ log(ȳ/(m̄− ȳ))) + nm̄ log(1 − ȳ/m̄).

4.5.1. Deviance. The scaled deviance D(y) for our GLM is simply related to the
log-likehood,

D(y) = −2ℓ(β̂; y) + 2ℓ(θ̂(s); y).

This is of course the LRT statistic for a test comparing the saturated model with
the GLM of interest. The deviance itself is the scaled deviance at scale parameter
φ = 1. Since the parameter space of θ(s) includes the parameter space of θ(β) as a
subspace, D(y) ≥ 0. The null deviance is

D(0) = −2ℓ(θ̂(0); y) + 2ℓ(θ̂(s); y).
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4.5.2. Goodness of fit. Since D is the LRT statistic for a test with null parameter
space of dimension p and alternative of dimension n, we expect D(Y ) ∼ χ2(n− p)
approximately, under the hypothesis that our GLM model includes all the factors
generating variation in the response. If D(y) is large on the scale of a χ2(n− p) rv,
then we question our model.

This model check is not always applicable. The problem is that D(Y ) ∼ χ2(n−p)
holds asymptotically, yes, but not asymptotically in n. We achieve the asymptotic
distribution for a LRT statistic as our MLE’s converge to their limiting values.
Since, in the saturated model, we have one parameter for each observation, increas-
ing n doesn’t add to the precision of our estimates of these parameters (increasing
n does increase the precision of our estimate of β, but that is just half the LRT
statistic).

So, when is this distributional assumption good? Suppose we had multiple repli-
cates for each observation yi,j , j = 1, ..., mi, for given explanatory variables xi,

and, in the saturated model, just the one parameter θ
(s)
i for each batch of mi repli-

cates. Now θ̂
(s)
i → θ

(s)
i as mi → ∞. This is the limit where the approximation

D(Y ) ∼ χ2(n− p) holds good. So, where do we have replicates?

Exercise Show that a binomial response Yi ∼ Binomial(mi, πi) is mi replicates

of a Bernoulli response, and hence that θ̂
(s)
i converges to log(π

(s)
i /(1 − π

(s)
i )) and

D(Y )
D→ χ2(n− p) as mi →∞ for each i = 1, 2, ..., n.

Bernoulli data has none of this structure. In this case D(Y ) ∼ χ2(n − p) will
not hold and any inference that depends on this approximation (residual analysis
below) is not useful.

4.5.3. Model choice. A test comparing two nested models (Q) with dimension q
and (P ) with dimension p < q has LRT statistic Λ = D(P )(y)−D(Q)(y), so

D(P )(y)−D(Q)(y) ∼ χ2(q − p).

The test for no relation between the mean response µi and the explanatory variables
ηi = xiβ in the model (Q) is the test for β2 = ... = βp = 0 (if β1 is the intercept)
has test statistic

D(0)(y)−D(Q)(y) ∼ χ2(q − 1).

All the remarks we made about model choice for a LM, in Section 3.2 apply
equally to GLMs. The problem has a similar structure. We want to check that
we have all the important variables in our model (using a Goodness of fit test, as
above), and then check we have no redundant variables. The tools available which
help us organise the search for a set of explanatory variables are like those for LM’s.
We can make forwards addition and backwards elimination, one variable at a time.
We can identify a reduced model by these or physical considerations, and test to
drop the corresponding complementary group of variables. We can make automatic
model choice using the AIC.

Example 4.7. In the following example, quoted from Venables and Ripley (2002),
based on data from Collet (1991, see V&R for reference), 12 batches of 20 tobacco
budworm moths were exposed for 3 days to different dose levels of a toxin. The
numbers dead or disabled were recorded. The data are displayed in Table 4. We
have a categorical variable sex ∈ {M, F} and a real ordinal variable dose, which we
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Dose
1 2 4 8 16 32

Mortality
Male 1 4 9 13 18 20
Female 0 2 6 10 12 16

Table 4. Tobacco budworm mortality data, from Collect 1971 via
Venables and Ripley (2002).

will code as ldose = log2(dose), as suggested by the scale of the variable. We look
for an effect due to ldose (fairly obvious!) and allow for possibly different intercepts
and slopes in the linear predictors for the two sexes. Our linear predictors are, for
i = 1, 2, ...n with n = 12,

ηi = β1 + β2gM,i + β3xd,i + β4gM,ixd,i

with gM,i = 1 if sex[i] = M and zero otherwise, and xd,i = ldose[i]. If yi are
the cell counts, then R will fit for the scaled response yi/mi (with mi = 20 for
i = 1, 2, ..., n here). The expected response is then µi = E(Yi/mi) which is µi = πi

with πi the probability of success in the ith Binomial trial, so yi ∼ Binomial(mi, πi).
In the notation of Example 4.6, we have the logistic link function

log(µi/(1− µi)) = ηi

modeling the proportion µi of ‘successes’, which are Moth-deaths in this case.

> #Example from Venables and Ripley (2002) Sec 7.2

> ldose<-rep(0:5,2) #the log-dose

> numdead<-c(1,4,9,13,18,20,0,2,6,10,12,16)

> sex<-c(rep("M",6),rep("F",6))

>

> #gather data in a data-frame

> #bw$sex is categorical with levels M,F

> bw<-data.frame(numdead,numalive=20-numdead,ldose,sex)

>

> #to use glm we have some options how to enter the response

> #here we are using the [#successes,#failures] format

>

> #logistic regression

> bw.glm<-glm(cbind(numdead,numalive)~sex*ldose,data=bw,family=binomial)

> summary(bw.glm)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.9935 0.5527 -5.416 6.09e-08 ***

sexM 0.1750 0.7783 0.225 0.822

ldose 0.9060 0.1671 5.422 5.89e-08 ***

sexM:ldose 0.3529 0.2700 1.307 0.191

...

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 124.8756 on 11 degrees of freedom
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Residual deviance: 4.9937 on 8 degrees of freedom AIC: 43.104

Number of Fisher Scoring iterations: 4

Are we missing sources of variation? The test for goodness-of-fit is D ∼ χ2(n− p)
with n = 12 and p = 4. Since mi = 20 is acceptably large, we can expect the
asymptotics for D to hold good. Comparing D(y) = 4.9937 to a χ2(8) random
variable,

> 1-pchisq(4.9937,8)

[1] 0.7582493

we get a p− value of around 0.76, so we see no evidence for misfit in this respect.
Can we drop any terms from this model. The two variables sexM and sexM:ldose

are obvious candidates. In order to get the deviance for the reduced model, we refit
using the reduced model.

> bw.glm<-glm(cbind(numdead,numalive)~ldose,data=bw,family=binomial)

> summary(bw.glm)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7661 0.3701 -7.473 7.82e-14 *** ldose

1.0068 0.1236 8.147 3.74e-16 ***

...

Residual deviance: 16.984 on 10 degrees of freedom AIC: 51.094

The change in the deviance on dropping sex and sex:ldose is 16.984− 4.9937 =
11.9903 with n = 12, q = 4, p = 2 and since D′ − D ∼ χ2(q − p) under the null
model without sex and sex:ldose, the test to drop the two variables has p-value

> 1-pchisq(11.99,2)

[1] 0.002491177

strong evidence for some role for at least one of these variables.
As Venables and Ripley (2202) point out, this p-value might be a bit surprising

given the apparent low significance of the individual variables. As they note, the
fact that the offset β2 in the intercept is not significant is not surprising. This is the
difference in mean response between sexes at dose = 1 (so ldose = 0) and there are
few deaths on either side at low dose. The intercept and slope offset estimates are
quite significantly (anti) correlated (inspect I−1 = summary(bw.glm)$cov.scaled
for detail) so we have here the kind of significance-masking due to near-linear de-
pendence that we have discussed for linear models. If we shift the intercept to a
central dose value, say dose = 8 or ldose = 3 we reduce this correlation (without
changing the meaning of the other parameters). This can be thought of as a step
towards orthogonalising the original variables gM in order to reduce correlation.

> bw.glm<-glm(cbind(numdead,numalive)~sex*I(ldose-3),data=bw,family=binomial)

> summary(bw.glm)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2754 0.2305 -1.195 0.23215

sexM 1.2337 0.3770 3.273 0.00107 **

I(ldose - 3) 0.9060 0.1671 5.422 5.89e-08 ***
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sexM:I(ldose - 3) 0.3529 0.2700 1.307 0.19117

Null deviance: 124.8756 on 11 degrees of freedom

Residual deviance: 4.9937 on 8 degrees of freedom AIC: 43.104

Number of Fisher Scoring iterations: 4

We can now see that there is no evidence for different slopes for the two sexes, but
the intercepts are not equal. Venables and Ripley (2002) go on to test for curvature,
looking for dependence on (ldose− 3)2.

Note that we can form an analysis of deviance table for a GLM fit. Like the
default R ANOVA table, this looks at the nested sequence of models obtained by
dropping the variables one at a time. The analysis of deviance table gives, in each
row, the increase in the deviance as the model variables in the corresponding row
are removed from the model. For example, here is the analysis of deviance table
for the test on the original fit with intercept as ldose = 0.

> anova(bw.glm,test=’Chisq’)

Analysis of Deviance Table

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 11 124.876

ldose 1 107.892 10 16.984 2.839e-25

sex 1 10.227 9 6.757 0.001

ldose:sex 1 1.763 8 4.994 0.184

The first row gives the null deviance, D(0) (called here the residual deviance). The
second row gives the p-value for testing for an effect due to ldose in a model with
just intercept. The column headed Deviance is what we would call the change in
deviance, and the column headed Resid. Dev is what we would call the deviance.
The levels of significance depend on the order in which the variables are added. We
can see now that sex was signifcant from the first, but in the original summary()
output its significance was masked by correlation with the slope offset.

4.6. Further GLM diagnostics. In order to identify outliers, we can make an
analysis of residuals, just as for normal linear models. There are a number of
different ways to define residuals for GLM’s.

A poorly fitting point will make a large contribution to the deviance. Let

ℓi(θ; yi) =
yiθ − κ(θi)

φ
+ c(yi; φ),

and let
di = −2ℓi(β̂; yi) + 2ℓi(θ̂

(s)
i ; yi),

so that

D(y) =

n
∑

i=1

di.

Now di ≥ 0 and data with relatively larger di are data in greater conflict with the
model and the rest of the data. The deviance residuals are defined to be

ri = sign(yi − µ̂i)di.

The function sign(yi − µ̂i) is +1 or −1 depending on the sign of yi − µ̂i and shows
us whether yi is in conflict by being relatively too large or too small compared to
the fitted mean.
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Another way to think about residuals is to consider the misfit in the space of the
linear predictor. Since g maps µ to η, we might compare g(y) and η̂. Expanding
g(y) about y = µ, g(y) ≃ g(µ)+g′(µ)(y−µ), an object which appears in our IRLS,
z = η + g′(µ)(y − µ). This gives us an interpretation of z in that algorithm. The
residuals z − η̂ = g′(µ̂)(y − µ̂) are called the working residuals (in R, for example).
They are exactly the residuals of the linear regression made in the IRLS. The Hat
matrix for that regression is

H = W 1/2X(XT WX)−1XT W 1/2,

and the leverages hii have the same role as before in the analysis of the working
residuals.

The standardised deviance residuals are

r′i = sign(yi − µ̂i)
di√

1− hii

.

It can be shown that if the original approximation D(y) ∼ χ2(n− p) is good then
the r′ usually have roughly unit variance and distributions close to normal. This
leads to a check for misfit.

Example 4.8. For the budworm moth analysis of Example 4.7, the standardised
deviance residuals are shown in Figure 15. These are given for the final model,
with equal slopes for the two sexes.

> bw.glm<-glm(cbind(numdead,numalive)~sex+I(ldose-3),data=bw,family=binomial)

> summary(bw.glm)

...

Deviance Residuals:

Min 1Q Median 3Q Max

-1.10540 -0.65343 -0.02225 0.48471 1.42944

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2805 0.2431 -1.154 0.24854

sexM 1.1007 0.3558 3.093 0.00198 **

I(ldose - 3) 1.0642 0.1311 8.119 4.7e-16 ***

...

Null deviance: 124.876 on 11 degrees of freedom

Residual deviance: 6.757 on 9 degrees of freedom

AIC: 42.867

Number of Fisher Scoring iterations: 4

> plot(fitted.values(bw.glm),rstandard(bw.glm))

There is no evidence for misfit, as there are no large (compared to one) standardised
deviance residuals. There is no obvious sign of a trend in the residuals. This is often
a sign of a problem with the link function (see problem 2 of PS5 - for an example -
try computing residuals for the log-link, and compare them with the residuals for
the sqrt link).

4.7. Dispersion and the scale parameter. When we model using a GLM based
on a one parameter family of distributions, such as Binomial and Poisson distribu-
tions, the scale parameter φ is equal one. When we model using other distributions
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Figure 15. Standardised residuals for the final model for the bud-
worm data of Example 4.7.

(Gamma, Normal etc) φ is not one, and may be unknown. In these cases we might
allow for over-dispersion, and extend the model, allowing φ 6= 1. We need an
estimate for φ.

Notice that the IRLS algorithm doesnt need φ! It follows that, operationally,
we can fit our GLM at φ = 1, and then look for estimates of φ based on the fitted

values of β̂.

Exercise verify that φ cancels out in each step of the IRLS squares iteration.

Since var(Yi) = φV (µi) we can form an estimate

φ̂ =
1

n− p

n
∑

i=1

(yi − µ̂i)
2

V (µ̂i)
,

with µ̂i = g−1(xT
i β̂).

When we fit a simple model with φ = 1, or otherwise known, and we suspect

over- (or who knows? under-) dispersion, we may wish to compute φ̂. If this

differs from one, the estimated confidence intervals for β̂, which depend on φ, as in
Section 4.3.3, will be wrong, and the estimated variance should now be multiplied

by φ̂.
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The picture cannot be so simple for Binomial and Poisson models. We can’t
simply scale the yθ − κ(θ) term by φ in these models and expect the exponential
family to remain the same. The requirement that the likelihood be normalised over
y (ie,

∫

exp (yθ/φ + c(y; φ)) dy = exp(κ(θi)/φ)) is no longer satisfied within the
original family. If we define φ = var(Y )/V (µ), yielding the estimator given above,
then we can get an ad-hoc adjustment for over-dispersion.

Exercise see related exercise on cloth fault data in PS6.
In either of these cases (ie when φ is a parameter of the likelihood, and when it is

an ad-hoc scale parameter adjusting the variance of estimates), the test for model
comparison based on the deviance is adjusted. If φ is estimated then the scaled

deviance is the ratio of the deviance at φ = 1 divided by φ̂. Since these quantities
have distributions which are approximated by χ2 distributions you will often see
an F -statistic used in GLM analysis to carry out this test. [End L14]
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