- Diagnostics (example), Model choice

- Akaike Information Criterion, Box Cox transformation.
Diagnostics, Example data(swiss) dataset

$n = 47$ observations of fertility with 5 potentially explanatory variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertility</td>
<td>fertility measure</td>
</tr>
<tr>
<td>Agriculture</td>
<td>% of males in agriculture</td>
</tr>
<tr>
<td>Examination</td>
<td>% top grade army exam</td>
</tr>
<tr>
<td>Education</td>
<td>% educated beyond primary</td>
</tr>
<tr>
<td>Catholic</td>
<td>% catholic</td>
</tr>
<tr>
<td>Infant.Mortality</td>
<td>% babies living < 1 year</td>
</tr>
</tbody>
</table>

Which variables explain Fertility?

Transform $(0,100)$ to R with logit function

$$x \leftarrow \log\left(\frac{x}{100 - x}\right)$$

Robust to $x = 0, 100$

$$x \leftarrow \log\left(\frac{1 + x}{101 - x}\right)$$

Increase sensitivity near $0, 100$.
> data(swiss)
> head(swiss) #first few rows

<table>
<thead>
<tr>
<th></th>
<th>Fertility</th>
<th>Agric</th>
<th>Exam</th>
<th>Edu</th>
<th>Cath</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courtelary</td>
<td>80.2</td>
<td>17.0</td>
<td>15</td>
<td>12</td>
<td>9.96</td>
<td>22.2</td>
</tr>
<tr>
<td>Delemont</td>
<td>83.1</td>
<td>45.1</td>
<td>6</td>
<td>9</td>
<td>84.84</td>
<td>22.2</td>
</tr>
<tr>
<td>Franches-Mnt</td>
<td>92.5</td>
<td>39.7</td>
<td>5</td>
<td>5</td>
<td>93.40</td>
<td>20.2</td>
</tr>
<tr>
<td>Moutier</td>
<td>85.8</td>
<td>36.5</td>
<td>12</td>
<td>7</td>
<td>33.77</td>
<td>20.3</td>
</tr>
<tr>
<td>Neuveville</td>
<td>76.9</td>
<td>43.5</td>
<td>17</td>
<td>15</td>
<td>5.16</td>
<td>20.6</td>
</tr>
<tr>
<td>Porrentruy</td>
<td>76.1</td>
<td>35.3</td>
<td>9</td>
<td>7</td>
<td>90.57</td>
<td>26.6</td>
</tr>
</tbody>
</table>

> sw<-swiss; #map data into R
> sw[,,-1]<-log((swiss[,,-1]+1)/(101-swiss[,,-1]))
> n<-dim(sw)[1]; p<-dim(sw)[2]

(i) Fit NLM, (ii) look for outliers and remove them (iii) select a model (iv) check again for outliers etc
Pairs plot for Swiss fertility data. Independent % variables have been mapped into the interval \((-\infty, \infty)\).
> # (i) fit a normal linear model
> sw1.lm<-lm(Fertility~Mortality+Exam+Edu+Cath+Agric,
+ data=sw)
> summary(sw1.lm)

...
Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------------|----------|------------|---------|----------|
| (Intercept) | 76.7438 | 11.4611 | 6.696 | 4.44e-08 *** |
| Infant.Mortality | 23.6269 | 6.9393 | 3.405 | 0.00149 ** |
| Examination | -6.2086 | 3.7104 | -1.673 | 0.10188 |
| Education | -6.8316 | 2.6984 | -2.532 | 0.01528 * |
| Catholic | 0.8225 | 0.6183 | 1.330 | 0.19079 |
| Agriculture | -1.8702 | 1.6896 | -1.107 | 0.27478 |

...
Residual standard error: 8.398 on 41 degrees of freedom
F-statistic: 12.16 on 5 and 41 DF, p-value: 2.960e-07
> # (ii) look for outliers (above) remove and refit
> i<-cooks.distance(sw1.lm)>(8/(n-2*p))
> swr<-sw[-which(i),]
> nr<-dim(swr)[1];
> swr1.lm<-lm(Fertility~Mortality+Exam+Edu+Cath+Agric,
+ data=swr)
> summary(swr1.lm)

...
Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 82.5002 12.3752 6.667 6.17e-08 ***
Infant.Mortality 26.9630 8.2567 3.266 0.00228 **
Examination -6.7927 3.5219 -1.929 0.06107 .
Education -5.9604 2.5509 -2.337 0.02469 *
Catholic 1.0270 0.6005 1.710 0.09514 .
Agriculture -2.8355 1.7661 -1.606 0.11645

Residual standard error: 7.866 on 39 degrees of freedom
F-statistic: 10.41 on 5 and 39 DF, p-value: 2.139e-06
> round(cor(sw[2:6,2:6]), 2)

<table>
<thead>
<tr>
<th></th>
<th>Agric</th>
<th>Exam</th>
<th>Edu</th>
<th>Cath</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agric</td>
<td>1.00</td>
<td>-0.06</td>
<td>0.58</td>
<td>-0.26</td>
<td>-0.40</td>
</tr>
<tr>
<td>Exam</td>
<td>-0.06</td>
<td>1.00</td>
<td>0.74</td>
<td>-0.92</td>
<td>-0.10</td>
</tr>
<tr>
<td>Edu</td>
<td>0.58</td>
<td>0.74</td>
<td>1.00</td>
<td>-0.81</td>
<td>-0.10</td>
</tr>
<tr>
<td>Cath</td>
<td>-0.26</td>
<td>-0.92</td>
<td>-0.81</td>
<td>1.00</td>
<td>0.45</td>
</tr>
<tr>
<td>Mortality</td>
<td>-0.40</td>
<td>-0.10</td>
<td>-0.10</td>
<td>0.45</td>
<td>1.00</td>
</tr>
</tbody>
</table>

> swr0.lm<-lm(Fertility~Mortality+Exam,data=swr)
> anova(swr0.lm,swr1.lm)

Analysis of Variance Table

Model 1: Fertility ~ Mortality + Exam
Model 2: Fertility ~ Mortality + Exam + Edu + Cath + Agric

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2810.68</td>
<td>39</td>
<td>2413.14</td>
<td>397.54</td>
<td>2.1416</td>
</tr>
</tbody>
</table>

No evidence to support the more complex model.
> summary(swr0.lm)
...
Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------------|----------|------------|---------|----------|
| (Intercept) | 95.133 | 10.871 | 8.751 | 5.15e-11 *** |
| Infant.Mortality | 32.982 | 8.009 | 4.118 | 0.000175 *** |
| Examination | -11.811 | 2.100 | -5.624 | 1.38e-06 *** |

Residual standard error: 8.181 on 42 degrees of freedom
F-statistic: 21.1 on 2 and 42 DF, p-value: 4.545e-07
Model choice v. Exploratory data analysis

- hypothesis → data → test (trees)

- data → hypothesis ↔ test (swiss)

Using the same data to generate and test the hypothesis - data snooping \(p \)-values are thinned from a larger set, bias.

As Davison (2003) section 8.7 remarks “...the only covariates for which subsequent inference using the standard confidence intervals is reliable are those for which the evidence for inclusion is overwhelming”.

May find natural physical meaning in chosen model. Can then imagine scientist entering analysis with this hypothesis. (trees again)
automatic variable selection: not guided by physical considerations

Best model? exclude all non-significant/include all significant (but... correlations mess this up)

Backwards elimination take all variables, drop the least significant, to fully significant set.

Forwards selection add 'next most significant'.

s^2 in FE biased up by missing significant variables, significance suppression

[saw this before, use

$$\frac{RSS_{1:p}}{(n - p)} \quad \text{not} \quad \frac{RSS_{1:(p-k)}}{(n - p + k)}$$

in ANOVA table, denominator of F in 1st row]
The Akaike Information Criterion

Compare models using AIC: balance complexity against model fit.

Have data Y. Suppose had new data Y'.

$$C(Y, Y') = -2\ell(\hat{\beta}(Y), \hat{\sigma}^2(Y); Y')$$

We like models that make $E(C(Y, Y'))$ small.

$$D(Y) = -2\ell(\hat{\beta}(Y), \hat{\sigma}^2(Y); Y) \quad \text{(Deviance)}$$

$$E(D) = E\left(n \log(\hat{\sigma}^2(Y)) + n\right)$$

Claim

$$E(C(Y, Y')) = E(D(Y)) + \frac{n^2}{n - p - 2} + \frac{np}{n - p - 2}$$

so $D(y) + ...$ is an unbiased estimator for $E(C)$.

At large n $E(C)$ and the AIC

$$AIC = n \log(\text{RSS}/n) + 2p$$

rank models in the same order. Small is good.
Example data(trees): y volume, x_1 girth, x_2 the height. $RSS(\alpha, \beta_1, \beta_2, \gamma)$ for

$$Y_i = \alpha + \beta_1 x_1^2 + \beta_2 x_2 + \gamma x_1^2 x_2 + \epsilon$$

$RSS(\alpha, \beta_1, \beta_2, \gamma) = 179.3$, $RSS(\alpha, \beta_1, \beta_2, 0) = 219.4$

$RSS(\alpha, 0, 0, \gamma) = 180.2$, $RSS(0, 0, 0, \gamma) = 181$

> n<-31; p<-c(4,2,3,1);
> RSS<-c(179.3,180.2,219.4,181.0);
> n*log(RSS/n)+2*p

<table>
<thead>
<tr>
<th>Model</th>
<th>p</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha, \beta_1, \beta_2, \gamma$</td>
<td>4</td>
<td>179.3</td>
<td>62.4</td>
</tr>
<tr>
<td>α, γ</td>
<td>2</td>
<td>180.2</td>
<td>58.56</td>
</tr>
<tr>
<td>α, β_1, β_2</td>
<td>3</td>
<td>219.4</td>
<td>66.66</td>
</tr>
<tr>
<td>γ</td>
<td>1</td>
<td>181.0</td>
<td>56.70</td>
</tr>
</tbody>
</table>

$y = \gamma x_1^2 x_2 + \epsilon$ is selected by AIC.
AIC compares on basis of prediction success, tends to keep variables other criteria drop.

> #swr has the two apparent outliers dropped
> swr1.lm<-lm(Fertility~Mortality+Exam+Edu+Cath+Agric,data=swr)
> step(swr1.lm)
Start: AIC=191.19
Fertility ~ Mortality + Exam + Edu + Cath + Agric

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2413.14</td>
<td>191.19</td>
</tr>
<tr>
<td>- Agriculture</td>
<td>1</td>
<td>159.49</td>
<td>2572.63</td>
</tr>
<tr>
<td>- Catholic</td>
<td>1</td>
<td>181.01</td>
<td>2594.15</td>
</tr>
<tr>
<td>- Examination</td>
<td>1</td>
<td>230.17</td>
<td>2643.31</td>
</tr>
<tr>
<td>- Education</td>
<td>1</td>
<td>337.80</td>
<td>2750.94</td>
</tr>
<tr>
<td>- Infant.Mortality</td>
<td>1</td>
<td>659.84</td>
<td>3072.98</td>
</tr>
</tbody>
</table>

Call:

lm(formula=Fertility~Mortality+Exam+Edu+Cath+Agric,data=swr)
...

Claim

\[E(C(Y, Y')) = E(D(Y)) + \frac{n^2}{n-p-2} + \frac{np}{n-p-2} \]

Expand LHS:

\[-2E(\ell(\hat{\beta}(Y), \hat{\sigma}(Y); Y')) = E\left(n \log(\hat{\sigma}^2(Y)) + \frac{(Y' - X\hat{\beta}(Y))^2}{\hat{\sigma}^2(Y)}\right). \]

Second term is

\[E\left(\frac{(Y' - X\hat{\beta}(Y))^2}{\hat{\sigma}^2(Y)}\right) = E\left(\frac{(Y' - X\beta + X\beta - X\hat{\beta}(Y))^2}{\hat{\sigma}^2(Y)}\right) \]

\[= E_Y\left(\frac{n\sigma^2}{\hat{\sigma}^2(Y)}\right) + E_Y\left(\frac{(X\beta - X\hat{\beta}(Y))^2}{\hat{\sigma}^2(Y)}\right) \]

since \(E_{Y'}((Y' - X\beta)^2) = n\sigma^2 \) and

\[E\left(\frac{2(Y' - X\beta)^T(X\beta - X\hat{\beta}(Y))}{\hat{\sigma}^2(Y)}\right) = 0 \]
\(\hat{\sigma}^2 = \frac{\text{RSS}}{n} \) and \(X\beta(Y) = \hat{Y} \) are independent

\[
\mathbb{E}\left(\frac{(X\beta - X\beta(Y))^2}{\hat{\sigma}^2} \right) = \mathbb{E}\left((X\beta - \hat{Y})^2 \right) \mathbb{E}\left(\frac{n}{\text{RSS}(Y)} \right).
\]

\[\text{var}(\hat{Y}) = \sigma^2 H \text{ so} \]

\[
\mathbb{E}\left((X\beta - \hat{Y})^2 \right) = \sum_{k=1}^{n} \sigma^2 h_{kk} = \sigma^2 p.
\]

Exercise \(Z \sim \chi^2(\nu) \) with \(\nu > 2 \) then \(\mathbb{E}(1/Z) = 1/(\nu - 2) \)

here \(\text{RSS}/\sigma^2 \sim \chi^2(n - p) \) so \(\mathbb{E}(\sigma^2/\text{RSS}) = 1/(n - p - 2). \)

\[
\mathbb{E}\left(\frac{(Y' - X\beta(Y))^2}{\hat{\sigma}^2(Y)} \right) = \frac{n^2}{n - p - 2} + \frac{np}{n - p - 2}.
\]
Box-Cox

Observations of $y, x_1, ..., x_p$ with $y_k \geq 0$.

y not linear with $x_1, ..., x_p$ try

$$y' = (y^\lambda - 1)/\lambda$$

treating λ as an(other) unknown parameter.

$(y^\lambda - 1)/\lambda$ gives powers of y and $\log(y)$.

Likelihood is now

$$L(\beta, \sigma^2, \lambda; y') \propto \frac{1}{\sigma^n} \exp \left(-\frac{1}{2\sigma^2} \sum_k (y'_k - x_k^T \beta)^2 \right).$$

Exercise Compute MLE’s.
Example: fraction of successful putts as a function of distance in feet.

```r
> putts <- data.frame(Dist=2:20, Prop=c(0.93, 0.83, 0.74, 0.59, 0.55, 0.53, 0.46, 0.32, 0.34, 0.32, 0.26, 0.24, 0.31, 0.17, 0.13, 0.16, 0.17, 0.14, 0.16))
> putts
   Dist Prop
  1   2 0.93
  2   3 0.83
  3   4 0.74
  ... 
 17  18 0.17
 18  19 0.14
 19  20 0.16
> y <- (1 - putts$Prop) / putts$Prop
> x <- putts$Dist
```
The λ value was estimated by maximising the likelihood, as above.
\begin{verbatim}
> putts.bc<-boxcox(y~x)

> putts.lm<-lm(sqrt(y)~x)
> summary(putts.lm)
...
Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.14342 0.09818 1.461 0.162
 x 0.12293 0.00799 15.386 2.07e-11
...
\end{verbatim}

\[\sqrt{\frac{1 - \text{Prop}}{\text{Prop}}} = \text{Dist} + \epsilon \]