BS1a Applied Statistics
Lectures 1-2

Dr Geoff Nicholls

Week 1 MT10
The linear model: \(i = 1, ..., n \) observations \(y_i, \)

\[
y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + ... \beta_p x_{i,p} + \epsilon_i,
\]
with \(\epsilon_i \sim N(0, \sigma^2) \) iid normal errors.

\(n \times p \) design matrix \(X = [x_{i,j}] \) or \(X = (X_1, X_2, ..., X_p) \)

\[
\beta = (\beta_1, \beta_2, ..., \beta_p)^T
\]

\[
y = X \beta + \epsilon
\]

\(y, X_i, \epsilon \) each in \(\mathbb{R}^n \). Sometimes omit subscripts

\[
y = \alpha + \gamma_1 z_1 + ... + \gamma_m z_m + \epsilon
\]
is scalar with \(\beta_1 = \alpha, x_1 = 1 \quad \beta_2 = \gamma_1, x_2 = z_1 \) etc.
Cigarettes: $x_2 = \text{Nicotine}, x_3 = \text{Tar}, x_4 = \text{Weight}$.

MLE $\hat{\beta}$ for parameters, normal linear model

$$y = 3.2 - 2.63x_2 + 0.96x_3 - 0.13x_4 + \epsilon$$

Correlation \Rightarrow cant attribute causal variable.
trees data.
volume, height and girth, consider
\[v = \eta h^{1+\beta_2 g^2 + \beta_3 \gamma} \]
\(\eta \) constant and \(\gamma \) a random variable.
\[y = \beta_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon \]
with \(y = \log(v/hg^2) \), \(\beta_1 = \log(\eta) \), \(x_2 = \log(h) \), \(x_3 = \log(g) \) and \(\epsilon = \log(\gamma) \).

MLE’s were \(\hat{\beta}_1 = -6.6, \hat{\beta}_2 = 0.12, \hat{\beta}_3 = -0.02 \) and \(\hat{\sigma} = 0.08 \) so
\[v = \exp(-6.6) h^{1.12} g^{1.98} \gamma, \]
\(\log(\gamma) \sim \text{N}(0, 0.08^2) \).

Test H0: \(\beta_2 = \beta_3 = 0 \) is a natural next step.
Estimators in the normal linear model.

Log-likelihood (x_i \text{ \text{ith row of } } X)

\[\ell(\beta, \sigma^2; y) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - x_i\beta)^2. \]

RSS(\beta) = (y - X\beta)^T(y - X\beta).

MLE \hat{\beta} for \beta minimises the RSS at fixed \sigma.

\[\text{col}(X) = \{ z \in \mathbb{R}^n : z = X\beta, \beta \in \mathbb{R}^p \} \]

Assume \(X_i, i = 1, ..., p\) linearly independent \(\text{col}(X)\) is \(p\)-dim linear subspace of \(\mathbb{R}^n\).

Choose \(\hat{\beta}\) so \(\hat{y} = X\hat{\beta}\) is the orthogonal projection of \(y\) into \(\text{col}(X)\). Then

\[X^T(y - X\hat{\beta}) = 0 \]

is \(p\) equations in \(p\) unknowns.
If X^TX is invertible (eg X rank p)

$$\hat{\beta} = (X^TX)^{-1}X^Ty$$

$\hat{\sigma}^2_{MLE}$ maximises

$$\ell(\hat{\beta}, \sigma^2; y) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} (y - X\hat{\beta})^T (y - X\hat{\beta})$$

at

$$\hat{\sigma}^2_{MLE} = \frac{RSS}{n}$$

sub this in above to get

$$\ell(\hat{\beta}, \sigma^2_{MLE}; y) = -\frac{n}{2} \log(RSS/n) - n/2.$$
Properties of Estimators

\(n \times n \) hat matrix \(H \)

\[
H = X(X^T X)^{-1} X^T
\]

and estimated response \(\hat{y} = Hy \).

Residuals, \(e = y - \hat{y} \), with \(\text{RSS}(\hat{\beta}) = e^T e \).

Main results (for the normal linear model)

- \(\text{RSS}/\sigma^2 \sim \chi^2(n - p) \)

- \(\hat{\beta} \) and RSS are independent \((\Rightarrow t\text{-test}) \)

- In fact (!) the residuals \(e \) and the estimated response \(\hat{y} \) are independent.
$U = (U_1, ..., U_p)^T$ and $W = (W_1, ..., W_n)^T$

$$\text{cov}(U, W) = E((U - \mu_U)(W - \mu_W)^T)$$

is $p \times n$ with $\text{cov}(U, W)_{i,j} = \text{cov}(U_i, W_j)$.

$$\text{var}(U) = E((U - \mu_U)(U - \mu_U)^T)$$

is symmetric $p \times p$ with $\text{var}(U)_{i,j} = \text{cov}(U_i, U_j)$.

$\text{var}(\epsilon) = \sigma^2 I_n$ so $\text{var}(Y) = \sigma^2 I_n$.

Check \hat{y} and residuals e are uncorrelated

$$\text{cov}(\hat{Y}, Y - \hat{Y}) = 0_{n,n}$$

[Note: jointly normal, with zero covariance, implies independent...]

If $W \sim N(\mu_W, \Sigma)$ and L is $p \times n$ rank $p \leq n$ then $LW \sim N(L\mu_W, L\Sigma L^T)$.

$$\hat{\beta} \sim N(\beta, \sigma^2(X^TX)^{-1})$$

Here $L = (X^TX)^{-1}X^T$ is rank p and $W = Y$.

[End L1]
Claim:
e and \(\hat{Y} \) (and \(\hat{\beta} \) and RSS) are independent.

Let \(\varepsilon_1, ..., \varepsilon_p \) be orthonormal basis for \(\text{col}(X) \).

Extend to \(\varepsilon_1, ..., \varepsilon_p, \varepsilon_{p+1}, ..., \varepsilon_n \), orthonormal basis for \(\mathbb{R}^n \).

Expand \(Y \)

\[
Y = Z_1\varepsilon_1 + ... + Z_n\varepsilon_n.
\]

with \(Z_i = \varepsilon_i^TY \) random weights. Now

\[
\hat{Y} = Z_1\varepsilon_1 + ... + Z_p\varepsilon_p,
\]

since \(H\varepsilon_i = 0, i > p \). Next \(e = Y - \hat{Y} \) so

\[
e = Z_{p+1}\varepsilon_{p+1} + ... + Z_n\varepsilon_n.
\]

Now claim \(Z_i \) are jointly independent. If so, \(\hat{Y} \) and \(e \) are independent.
Weights

\[Z_i = \varepsilon_i^T Y \quad Z_i \sim N(\varepsilon_i^T E(Y), \sigma^2) \]

or \(Z = (Z_1, \ldots, z_n)^T, \ E = (\varepsilon_1, \ldots, \varepsilon_n) \)

\[Z = E^T Y \quad Z \sim N(E^T E(Y), \sigma^2 I_n) \]

by LW-property above and

\[\text{cov}(Z_i, Z_j) = \varepsilon_i^T \text{cov}(Y, Y) \varepsilon_j \]

so uncorrelated \(i \neq j \) and \(\text{var}(Z_i) = \sigma^2 \).

Since they are jointly normal and uncorrelated, they are independent.
Claim:
\[\frac{\text{RSS}}{\sigma^2} \sim \chi^2(n - p) \]

Since \(E(Y) = X\beta \), and \(\varepsilon_i^T X = 0_{1,p} \) for \(i > p \)
\[Z_i \sim N(0, \sigma^2), \quad i = p + 1, \ldots, n \]

Using \(\text{RSS} = e^T e, \)
\[\text{RSS} = Z_{p+1}^2 + \ldots + Z_n^2. \]

Now \((Z_i/\sigma)^2 \sim \chi^2(1) \) so
\[\frac{\text{RSS}}{\sigma^2} \sim \chi^2(n - p), \]
under \(H_0 \). Also \(A \sim \chi^2(r) \) then \(E(A) = r \) so \(E(\text{RSS}/\sigma^2) = n - p \) and
\[s^2 = \frac{\text{RSS}}{n - p} \]

is an unbiased estimator for \(\sigma^2 \).
Tests: R-output for trees data was

Coefficients:

| | Estimate | Std. Err | t val | Pr(>|t|) |
|------------------|----------|----------|-------|----------|
| (Intercept) | -6.63162 | 0.79979 | -8.292| 5.06e-09 *** |
| log(Height) | 0.11712 | 0.20444 | 0.573 | 0.571 |
| log(Girth) | -0.01735 | 0.07501 | -0.231| 0.819 |

Have seen

\[\hat{\beta} \sim N(\beta, \sigma^2(X^TX)^{-1}) \]

and

\[\frac{RSS}{\sigma^2} \sim \chi^2(n - p) \]

independently, in the NLM so

\[\frac{\hat{\beta}_k}{\text{Std.Error}(\hat{\beta}_k)} \sim t(n - p) \]

under the null model with \(\beta_k = 0 \).

See that \(\beta_2 = 0 \) and \(\beta_3 = 0 \) allowed separately but would like to check this holds jointly...
The F-Test (background): drop k variables from a NLM

$$H_0 : y = \sum_{i=1}^{p-k} \beta_i^{(0)} x_i + \epsilon.$$

$$X^{(0)} = [X_1, ..., X_{p-k}], H^{(0)} = \tilde{X}(\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T, ...$$

$$H_1 : y = \sum_{i=1}^{p} \beta_i^{(1)} x_i + \epsilon.$$

$$X^{(1)} = [X_1, ..., X_p], \text{ so } X^{(1)} = X, H^{(1)} = H, ...$$

LRT:

$$\Lambda(Y) = -2(\ell(\hat{\beta}^{(0)}, \hat{\sigma}_{MLE,0}^2; Y) - \ell(\hat{\beta}^{(1)}, \hat{\sigma}_{MLE,1}^2; Y))$$

$$= n \log \left(1 + \frac{\text{RSS}^{(0)} - \text{RSS}^{(1)}}{\text{RSS}^{(1)}} \right).$$

Reject H_0 if $\Lambda(y) > \chi^2_{1-\alpha}(k)$ (approximate)
F-Test:

\[F(y) = \frac{(\text{RSS}^{(0)} - \text{RSS}^{(1)})/k}{\text{RSS}^{(1)}/(n - p)}. \]

\[\text{N}(\mu, \sigma^2), \chi^2(k), t(k), \ldots \quad F(a, b) \]

Independent r.v. \(A \sim \chi^2(a) \) and \(B \sim \chi^2(b) \)

\[F = \frac{(A/a)}{(B/b)} \Rightarrow F \sim F(a, b) \]

for such \(F \), \(\text{E}(F) = b/(b - 2) \) so for example

\[\text{E}(F(Y)) = \frac{(n - p)}{(n - p - 2)} \]

about 1 when \(n \gg p \).

Reject \(H_0 \) if \(F(y) > F_{1-\alpha}(k, n - p) \).
Example (trees again)

Compare $v = \eta h g^2 \gamma$ with $v = \eta h^{1+\beta_2 g^2 + \beta_3 \gamma}$

$H_0 : y = \beta_1^{(0)} + \epsilon^{(1)}$

$H_1 : y = \beta_1^{(1)} + \beta_2^{(1)} x_2 + \beta_3^{(1)} x_2 + \epsilon^{(1)}$

```r
> tr.lm0<-lm(log(Volume/(Height*Girth^2))~1)
> (rss0<-sum(tr.lm0$residuals^2))
[1] 0.1876858

> tr.lm1<-lm(log(Volume/(Height*Girth^2))~
                  1+log(Height)+log(Girth),data=trees)
> (rss1<-sum(tr.lm1$residuals^2))
[1] 0.1854634

> k<-2; n.minus.p<-31-3
> (F<-(rss0-rss1)*n.minus.p/(k*rss1))
[1] 0.1677617
> (p<-(1-pf(F,k,n.minus.p))
[1] 0.8463989
```

The p-value is $p = 0.85$
Accept $H_0 : \beta_2 = \beta_3 = 0.$
Claim:
The F-test is an exact LRT for the NLM.

\[\Lambda = n \log \left(1 + \frac{k}{(n - p)F} \right) \]

\(\Lambda \) is a strictly increasing function of \(F \)

Set \(C', C \) so

\[\Pr(F(Y) > C'|H_0) = 1 - \alpha \]

and

\[\Pr(\Lambda(Y) > C|H_0) = 1 - \alpha. \]

\(F \)-Test

LRT (exact) \{ reject \(H_0 \) if \ \{ \begin{align*}
F(y) &> C' \\
\Lambda(y) &> C
\end{align*} \}

but \(F(y) > C' \) iff \(\Lambda(y) > C \) since monotone.
[end L2]