Practical 4 – Recursion and Runtime

Q1. Here is an R implementation of Bubble sort.

```r
bubblesort <- function(x) {
  if ( (n < length(x)) < 2) return(x)
  sorted <- FALSE
  while (!sorted) {
    sorted <- TRUE
    for (i in 2:n) {
      if (x[i] < x[i-1]) {
        x[i:(i-1)] <- x[(i-1):i]
        sorted <- FALSE
      }  
    }
  }
  return(x)
}
```

Modify the `bubblesort` function so that the number of pairs of elements that are compared and the number of pairs that are swapped are returned in a list with the sorted vector. Call this new function `bubblesort1`.

```r
bubblesort1 <- function(x) {
  if ( (n < length(x)) < 2) return(x)
  sorted <- FALSE
  tests <- swaps <- 0
  while (!sorted) {
    sorted <- TRUE
    for (i in 2:n) {
      tests <- tests + 1
      if (x[i] < x[i-1]) {
        swaps <- swaps + 1
        x[i:(i-1)] <- x[(i-1):i]
      }
    }
  }
  return(list(x, tests, swaps))
}
```

For each of the following 4 vectors use `bubblesort1` to find the number of pairs of elements that are compared and the number of pairs that are swapped.

(a) \(v_1 = c(16, 12, 4, 6, 11, 19, 5, 2, 15, 1, 3, 18, 14, 8, 20, 10, 7, 13, 9, 17)\)
(b) \(v_2 = 1:2000\)
(c) \(v_3 = 2000:1\)
(d) \(v_4 = \text{sample}(v_2, 2000)\) [note: this samples 2000 integers without replacement from the vector \(v_2\) so you will get a different vector each time you run it.]

```r
> v1 = c(16, 12, 4, 6, 11, 19, 5, 2, 15, 1, 3, 18, 14, 8, 20, 10, 7, 13, 9, 17)
> bubblesort1(v1)[2:3]
```
How many pairs of elements are compared in the worst case, as a function of the input length n?
(Ans $n \cdot (n - 1)$ or in other words $O(n^2)$)

Q2. Suppose A, B are $n \times n$ matrices and x is an $n \times 1$ vector, and we need the matrix product ABx. How many multiplications are $n \cdot A(Bx)$? (Answer, $2n^2$). How many in $(AB)x$? (Answer, $n^2 + n^3$). Which of these does R use to evaluate $A%*%B%*%x$? (Answer, the slow one $(AB)x$).

Q3. Pascal's triangle is a geometric arrangement of the binomial coefficients in a triangle.

```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
....
```

Entries in each row are determined by summing adjacent numbers in the previous row. The start and end of each row is always 1. Write an R function to calculate the nth row of Pascal’s triangle using the idea of recursion.

```
pascal = function(n) {
  if (n==1) return(1)
  y = pascal(n-1)  #if this is the n-1st row
  return(c(0,y)+c(y,0))  #then this is the nth row
}
```
Q4. Here is an algorithm converting a non-negative integer \(x \) to binary.

0) If \(x \) is one or zero then return \(x \). Otherwise, proceed as follows.

1) Take the remainder \(B_0 \) when \(x_0 = x \) is divided by 2. This is the first digit (coefficient of \(2^0 \)). (Hint – what do \(\% \) and \(\%/ \) do?)

2) Now set \(x_1 = (x_0 - B_0)/2 \). Repeat this collecting \(B_1, B_2 \) etc.

3) The algorithm stops when we have divided \(x \) down to \(x_n = 1 \). Set \(B_n = 1 \) and return the binary number with digits \(B_n \ldots B_1 B_0 \).

Write a recursive R function implementing this algorithm. Your function should take as input a non-negative integer \(x \) and return the corresponding binary number. Represent the binary number as a vector, so for example 10 is \(c(1,0,1,0) \).

```r
dec2bin <- function(x) {
  # convert decimal integer x>=0 to binary
  if (round(x)!=x || x<0) stop('x should be an integer >=0')
  if (x<2) return(x)
  return(c(dec2bin(x%/%2),x%%2))
}
```

Q5 Implement the following sorting algorithm.

Insertion sort: sort \((x_1, \ldots, x_{n-1})\) then take \(x_n \) and insert it in correct position in the sorted vector. Sort \((x_1, \ldots, x_{n-1})\) using Insertion sort!

```r
g<-function(x) {
  # insertion sort
  if (length(x)<2) return(x)
  p<-x[1]; x<-g(x[-1])
  if (p<=x[1]) return(c(p,x))
  if (p>=x[length(x)]) return(c(x,p))
  i<-1; while (x[i]<p) i<-i+1
  return(c(x[1:(i-1)],p,x[i:n]))
}
```

Show that the worst case number of comparisons in insertion sort is \(O(n^2) \).

Worst case for insertion sort is a monotone decreasing list \(x=(n,n-1,\ldots,1) \). Each time it takes the first entry off and compares it to all the others for \((n-1)+(n-2)+\ldots+1\) comparisons (actually twice that as I have coded it). That is \(O(n^2) \).

Q6

(i) Write an R function which simulates birthdays for \(n \) people. Assume 365 days in a year, represent dates as integers from 1 to 365, and assume birth-dates are uniformly distributed over the year.

Your function should take as input the number \(n \) of people
and return a vector of length \(n \) giving the \(n \) dates.

```r
birthdays <- function(n=23) {
    # return \( n \) simulated birthdays as a vector
    ceiling(365*runif(n))
}
```

(ii) Write an R function which tests to see if any date is repeated \(r \) times or more in a vector of \(n \) birthdays. How does the runtime of your function depend on \(n \)?

```r
is.repeated <- function(b, r=2) {
    # return true if an element of \( b \) is repeated
    # \( r \) times or more
    u <- rep(0, 365)
    # add one to each day as a birthday falls on that day
    for (k in 1:length(b)) u[b[k]] <- u[b[k]] + 1
    # do any day-tallies exceed \( r-1 \)
    return((any(u > (r-1))))
}
```

This takes \(n \) additions and 365 tests – we go through the \(n \) dates exactly once. The test for repeated dates goes through the 365 days of the year. So the above has runtime \(O(n) \).

(iii) Write an R function which estimates the probability that two or more people share a birthday in a group of \(n \) people, using \(m \) simulated sets of \(n \) birthdays. Your function should take as input the two integers \(n \) and \(m \) and return an estimate for the probability that two or more people share a birthday.

```r
estimate <- function(n, m, r=2) {
    # probability a birthday is repeated \( r \) times or more
    # in a group of \( n \) individuals based on \( m \) simulated groups
    x <- rep(0, m)
    for (t in 1:m) {
        b <- birthdays(n)
        x[t] <- is.repeated(b, r)
    }
    mean(x)
}
```