Q1. Here is an algorithm converting a non-negative number 0<x<1 to binary.

Let b be the binary representation of x. If x is zero or one then set b=x. Otherwise compute the first j binary places as follows. Let i=1 and y=2x. If y is greater than or equal one set b[i]=1 and x=y-1, and otherwise set b[i]=0 and x=y. If x is now zero then stop (as there are no more non zero places) and otherwise increase i by one and repeat until i=j and b[j] is evaluated.

(a) Write an R function implementing the algorithm you wrote down in (a). Your function should take as input a non-negative fraction x between 0 and 1 and return the corresponding binary representation, accurate to 56 binary places. Represent the binary number as a vector, so for example decimal 0.125 becomes c(0,0,1) in binary.

(b) At what binary place do R's numerical values for 0.3 and 0.1+0.1+0.1 differ?

Q2. Quick sort is a method for sorting a vector of numbers. A vector

x=c(x1,x2,...,xn) is given. The function s=qsort(x) returns a vector s of the same length as x with the entries of x given in numerically increasing order.

The algorithm works as follows. If the input vector x is empty (x=c(), so n=0), or has length n=1, the function returns s=x. Otherwise, pick a pivot (for example x[1]). Split the vector into entries smaller than the pivot x[1], say y=(x[i]: x[i]<x[1], i=2,...,n) and greater than or equal x[1], say z=(x[i]: x[i]>=x[1], i=2,...,n). Call qsort() to sort the (possibly empty) vectors y and z, and return s=(qsort(y),x[1],qsort(z)).

(a) Plan and write a recursive R function implementing Quick sort.

(b) Show that the runtime of Quick sort (measured in comparions) is O(n^2) for the worst case input.

Q3. Consider a sequence of observations x1,...,xn. Let \(\mu_i \) and \(\sigma^2_i \) denote the mean and sample variance of the first i observations \(x_1,...,x_i \leq n \). How many operations (additions/subtractions or multiplications/divisions) are needed to calculate the sequence of means \(\mu_1,...,\mu_n \) if each mean is calculated separately?

(a) Derive an expression for \(\mu_{i+1} \) in terms of \(\mu_i \) and \(x_{i+1} \) and write an R function that calculates \(\mu_1,...,\mu_n \) using this sequential formula. How many operations will this function use?

(b) Now consider the sequence of sample variances \(\sigma^2_1,...,\sigma^2_n \). Calculate the number of operations needed to calculate this sequence by evaluating each variance separately, and using a sequential method.
Q4. Consider the normal linear model \(Y = X\beta + \epsilon \) where \(Y \) is a vector of \(n \) observations, \(X \) is an \(n \times p \) matrix with each column containing a different explanatory variable and \(\epsilon \) is vector of \(n \) independent normal random errors with mean zero and unknown variance \(\sigma^2 \). The maximum likelihood estimator \(\hat{\beta} \) for \(\beta \) is \(\hat{\beta} = (X^T X)^{-1} X^T Y \). The sample variance \(S^2 \) is \(S^2 = \frac{1}{n-1} (X\hat{\beta} - Y)^T (X\hat{\beta} - Y) \).

(a) The \(\text{trees} \) data give Girth, Height and Volume measurements for 31 trees. Fit the normal linear model \(y = \beta_1 + x_{\text{girth}} \beta_2 + x_{\text{height}} \beta_3 + \epsilon \) using \(\text{data(trees)} \) and \(\text{summary(lm(Volume~Girth+Height,data=trees))} \) and briefly interpret the output. (\(\text{trees} \) is a built-in dataframe – start R and type “trees” at the console)

(b) Write a function of your own (using \(\text{solve()} \) or your solution to Q6, not \(\text{lm()} \)) to fit a normal linear model. Your function should take the 31x1 vector \(y=\text{trees}\$\text{Volume} \) and the 31x3 matrix \(X=\text{cbind(rep(1,31),trees}\$\text{Girth,trees}\$\text{Height}) \) as input and return estimates of \(\hat{\beta} \), the residual standard error \(S \) and the standard errors of each of the \(\hat{\beta} \)’s. Check your output against the corresponding results from the \(\text{summary(lm())} \) output in (a).

Q5. Here is an algorithm to compute the QR factorisation of \(n \times p \) matrix \(A \) with \(p<n \) into an \(n \times p \) orthogonal matrix \(Q \) and a \(p \times p \) upper triangular matrix \(R \). \(|v| \) is the Euclidean norm of vector \(v \), the square root of the sum of the squares of the elements of \(v \).

Step 1: Create \(n \times p \) matrix \(Q \) of NA’s and \(p \times p \) matrix \(R \) of NA’s.
Step 2: Set \(Q[,1]=A[,1]/|A[,1]| \) and \(R[1,1]=|A[,1]| \)
Step 3: If \(p=1 \) then we are done; return \(Q \) and \(R \).
Step 4: Otherwise (if \(p>1 \))
 Step 4.1: set \(R[1,2:p]=Q[,1]^T A[,2:p] \) and \(R[2:p,1]=0_{(p-1)x1} \)

Notice that \(Q[,1]R[1,2:p] \) is an outer product of an \(n \) component column vector and a \((p-1) \) component row vector so \(A' \) is a new \(n \times (p-1) \) matrix. Either make use the outer() command or, if you use \(\%\%\%\% \), be careful to use \(\text{drop=F} \) in forming these subset matrices.

Step 4.3: compute the QR factorisation of \(A' \) (\(A'=Q'R' \) say).
Step 4.4: set \(Q[,2:p]=Q' \) and \(R[2:p,2:p]=R' \) and return \(Q \) and \(R \).

(a) Implement this algorithm as a recursive function in R. Your function should take as input an \(n \times p \) matrix \(A \) and return two matrices \(Q \) and \(R \) in a list. State briefly how you checked your function was correct.

(b) Using your QR function, and the R \(\text{backsolve()} \) command, give a least squares solution to the over-determined system \(X \hat{\beta} = y \) where \(X \) and \(y \) take their values from the trees data in question 5.