1. Cholesky Decomposition.

(a) Write a function with argument \(n \) to generate a random symmetric \(n \times n \)-positive definite matrix. To do this:

- generate an \(n \times n \) matrix \(C \) whose entries are independent normal random variables;
- return \(CC^T \).

Check your matrices are positive definite using the \texttt{eigen()} function.

```
randPDmat <- function(n) {
  C <- matrix(rnorm(n^2), n, n)
  out <- C %*% t(C)
  out
}
```
```
A <- randPDmat(8)
all(eigen(A)$value > 0) # are all eigenvalues positive?
[1] TRUE
```

(b) Implement the recursive Cholesky decomposition algorithm from the lecture.

```
# Function to find Cholesky decomposition of symmetric
myChol <- function(A) {
  n <- dim(A)[1]
  if (dim(A)[2] != n) stop("A must be a square matrix") # check n x n
  if (n == 1)
    return(sqrt(A))
  L <- matrix(0, n, n)
  L[1, 1] <- sqrt(A[1, 1]) #count as 1 op
  L[1, 2:n] <- rep(0, n - 1)
  A22 = A[2:n, 2:n, drop = FALSE]
  newA = A22 - L[2:n, 1] %*% t(L[2:n, 1]) #2(n-1)^2 here
  # but n(n-1) possible
  L[2:n, 2:n] = myChol(newA)
  return(L)
}
```

(c) Test it using your function for generating positive definite matrices, and by comparing the answers to \texttt{chol()}.

```
A <- randPDmat(6)
## chol() gives an upper triangular matrix,
## but can compare transpose to our answer:
t(chol(A)) - myChol(A) # all numerically 0
```
(d) Create a function which takes a vector \(\mu \) and a symmetric positive definite matrix \(\Sigma \) and uses them to generate a multivariate normal vector \(N_n(\mu, \Sigma) \). Your function should check that \(\Sigma \) is positive definite using \(\text{eigen()} \) and symmetric using \(\text{isSymmetric()} \).

\[
\text{mvnorm} \leftarrow \text{function}(\mu, \Sigma) \{ \\
\quad \text{n <- nrow}(\Sigma) \\
\quad \text{## check matrix is valid} \\
\quad \text{if (min(eigen}(\Sigma)$values) \leq 0) stop("Sigma must be positive definite") \\
\quad \text{if (!isSymmetric}(\Sigma)) stop("Sigma must be symmetric") \\
\quad \text{## use method from lecture} \\
\quad L \leftarrow \text{myChol}(\Sigma) \\
\quad z \leftarrow \text{rnorm}(\text{n}) \\
\quad x \leftarrow \mu + L \times z \\
\quad \text{return(c}(x)\})
\]

2. Sorting. Here is an algorithm called ‘Quicksort’ for sorting the objects in a vector.

Function: sort a vector \(x \)

Input: vector \(x \) of length \(n \)

Output: a vector \(Q(x) \) containing entries of \(x \) arranged in ascending order

1. if \(n \leq 1 \) return \(x \);
2. pick an arbitrary ‘pivot’ element \(i \leq n \);
3. let \(z = (x_j \mid x_j < x_i) \) and \(y = (x_j \mid x_j > x_i) \);
4. let \(z' = Q(z) \) and \(y' = Q(y) \); [i.e. call the algorithm on the smaller vectors]
5. let \(x' \) be the entries in \(x \) not used in \(y \) or \(z \); [i.e. any entries equal to \(x_i \)]
6. return \((z', x', y') \).

(a) Implement the algorithm in R, and test it on some random numbers.

\[
\text{quickSort} \leftarrow \text{function}(x) \{ \\
\quad \text{n <- length}(x) \\
\quad \text{if (n <= 1) return(x)} \\
\quad \text{i <- sample}(n, 1) \quad \text{# pick a pivot at random} \\
\quad \text{z <- x[x < x[i]]} \\
\}
\]
y <- x[x > x[i]]
xis <- x[x == x[i]] # in case of ties

return(c(Recall(z), xis, Recall(y)))

x <- rnorm(10000)
out <- quickSort(x)

(b) What is the complexity if x_i is always the smallest element?
In this case we see $g(n) = 2n + g(n - 1) + g(0)$, so $g(n) = O(n^2)$. The algorithm relies on being able to divide the problem up to be efficient, so picking the smallest element doesn’t work very well.

(c) Show that, if the pivot x_i is the median element on each call, that the complexity is at most $O(n \log_2(n))$.
In this case we get a recursion of the form $g(n) = 2n + 2g((n - 1)/2)$. Now suppose that $g(k) \leq M k \log_2 k$ for some M and all $k < n$. Then

$$g(n) \leq 2n + 2M \frac{n}{2} \log_2 \frac{n}{2}$$
$$= 2n + M n \log_2 n - M n$$
$$\leq M n \log_2 n$$

provided that $M \geq 2$. Hence $g(n) = O(n \log_2 n)$.

3
3. Back Solving. Here is a recursive algorithm to solve $Ax = b$ where A is an upper triangular matrix, using back substitution.

Function: solve $Ax = b$ for x by back-substitution
Input: $n \times n$ upper triangular matrix A and vector b of length n
Output: vector x of length n solving $Ax = b$

1. If $n = 1$ return $x = b/A$;
2. create a vector x of length n;
3. set $x_n = b_n/A_{nn}$;
4. set $b' = b_{1:(n-1)} - A_{1:(n-1),n}x_n$;
5. set $A' = A_{1:(n-1),1:(n-1)}$;
6. solve $A'x' = b'$ for x' by back-substitution;
7. set $x_{1:(n-1)} = x'$;
8. return x.

(a) Implement this algorithm as a recursive function in R. Your function should take as input an upper triangular $n \times n$ matrix A and return a solution x satisfying $Ax = b$.

```
backSolve <- function(A, b) {
  n <- length(b)
  if (nrow(A) != ncol(A))
    stop("A must be a square matrix")
  if (nrow(A) != n)
    stop("Dimensions of A and b must match")
  x = b[n]/A[n, n]
  if (n == 1)
    return(x)
  A2 <- A[-n, -n, drop = FALSE]
  b2 <- b[-n] - A[-n, n] * x
  x = c(backSolve(A2, b2), x)
  return(x)
}
```

(b) For $n = 10$, create an $n \times n$ upper triangular matrix A and a vector b of length n. Check the solution from your function against backsolve() and solve().

```
> A <- matrix(0, 10, 10)
> A[upper.tri(A, diag = TRUE)] = rnorm(55)
> b <- rnorm(10)
> backSolve(A, b)
[1] 977.49 95.75 -526.03 -44.26 17.96 35.75 4.99 1.40
[9] 0.67 1.36
> solve(A, b)
[1] 977.49 95.75 -526.03 -44.26 17.96 35.75 4.99 1.40
[9] 0.67 1.36
```
4. Longest Increasing Subsequence.*

The object of this exercise is to write a function that, given a sequence of numbers \(a = (a_1, \ldots, a_k) \), returns \(Q(a) = (a_{s_1}, \ldots, a_{s_L}) \), the longest subsequence of \(a \) such that \(a_{s_1} < \cdots < a_{s_L} \). [Note that it is implicit in the idea of a subsequence that \(s_1 < \cdots < s_k \).]

(a) Write a function that, for each \(i \), recursively calculates the longest increasing subsequence of \((a_1, \ldots, a_{i-1}, a_i) \) that ends with \(a_i \). [Hint: remove the final element of \(a \) and invoke the function on this shorter vector; then add \(a_k \) to the longest subsequence whose final element is less than \(a_k \).]

```r
## Return longest increasing subsequences for first i entries input: x - a numeric vector output: a list of the same length as x, whose ith entry is the longest increasing subsequence of x[1],...,x[i] that ends with x[i].
liseqs <- function(x) {
  ## check length of x and finish if <= 1.
  n <- length(x)
  if (n == 0)
    return(list()) else if (n == 1)
    return(list(x))
  ## remove last element and recall function
  x_s <- x[-n]
  tmp <- Recall(x_s)

  ## if last element is smallest, longest sequence is just that value
  if (min(x) == x[n])
    return(c(tmp, list(x[n])))

  ## now get lengths of these subsequences
  len <- lengths(tmp, FALSE)

  ## attach x[n] to longest subsequence whose final element is smaller
  wh <- which.max(len * (x_s <= x[n])) # longest we can add x[n] to
  out <- c(tmp, list(c(tmp[[wh]], x[n])))

  out
}
liseqs(rnorm(10))
```

```r
[[1]]
[1] 0.553
[[2]]
[1] 0.553 0.559
[[3]]
[1] -0.124
[[4]]
[1] -1.15
```
(b) Use this to return a function that solves the problem of finding $Q(a)$.

This is now rather trivial.

```r
longIncSub <- function(x) {
  ## invoke the earlier function, and return the longest subsequence
  tmp <- liseqs(x)
  wh <- which.max(lengths(tmp))
  return(tmp[[wh]])
}

longIncSub(rnorm(10))

[1] -0.0537 0.1745 0.5944 0.8791
```

(c) Calculate the computational complexity of this method.

It is not hard to see that the code above just has to search through the list of vectors ending with a_1, \ldots, a_{k-1} to find the longest, so this is an operation that is just linear in k. Since this is recursed we have the relation $f(k) = O(k) + f(k - 1)$, and it is easy to check that this implies that $f(k) = O(k^2)$.