
Statistical Programming Worksheet 4

1. Cholesky Decomposition.

(a) Write a function with argument n to generate a random symmetric n × n-positive
definite matrix. To do this:

• generate an n× n matrix C whose entries are independent normal random vari-
ables;

• return CCT .

Check your matrices are positive definite using the eigen() function.

randPDmat <- function(n) {
C <- matrix(rnorm(n^2), n, n)

out <- C %*% t(C)

out

}

A <- randPDmat(8)

all(eigen(A)$value > 0) # are all eigenvalues positive?

[1] TRUE

(b) Implement the recursive Cholesky decomposition algorithm from the lecture.

# Function to find Cholesky decomposition of symmetric

myChol <- function(A) {
n <- dim(A)[1]

if (dim(A)[2] != n)

stop("A must be a square matrix") # check n x n

if (n == 1)

return(sqrt(A))

L <- matrix(0, n, n)

L[1, 1] <- sqrt(A[1, 1]) #count as 1 op

L[2:n, 1] <- A[2:n, 1]/L[1, 1] #n-1 ops

L[1, 2:n] <- rep(0, n - 1)

A22 = A[2:n, 2:n, drop = FALSE]

newA = A22 - L[2:n, 1] %*% t(L[2:n, 1]) #2(n-1)^2 here

# but n(n-1) possible

L[2:n, 2:n] = myChol(newA)

return(L)

}

(c) Test it using your function for generating positive definite matrices, and by comparing
the answers to chol().

A <- randPDmat(6)

## chol() gives an upper triangular matrix,

## but can compare transpose to our answer:

t(chol(A)) - myChol(A) # all numerically 0

1



[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0 0.00e+00 0 0

[2,] 0 0 0 0.00e+00 0 0

[3,] 0 0 0 0.00e+00 0 0

[4,] 0 0 0 2.22e-16 0 0

[5,] 0 0 0 -1.11e-16 0 0

[6,] 0 0 0 -2.78e-17 0 0

(d) Create a function which takes a vector mu and a symmetric positive definite matrix
Sigma and uses them to generate a multivariate normal vector Nn(µ,Σ). Your func-
tion should check that Sigma is positive definite using eigen() and symmetric using
isSymmetric().

mvnorm <- function(mu, Sigma) {
n <- nrow(Sigma)

## check matrix is valid

if (min(eigen(Sigma)$values) <= 0)

stop("Sigma must be positive definite")

if (!isSymmetric(Sigma))

stop("Sigma must be symmetric")

## use method from lecture

L <- myChol(Sigma)

z <- rnorm(n)

x <- mu + L %*% z

return(c(x))

}

2. Sorting. Here is an algorithm called ‘Quicksort’ for sorting the objects in a vector.

Function: sort a vector x
Input: vector x of length n
Output: a vector Q(x) containing entries of x arranged in ascending order

1. if n ≤ 1 return x;

2. pick an arbitrary ‘pivot’ element i ≤ n;

3. let z = (xj | xj < xi) and y = (xj | xj > xi);

4. let z′ = Q(z) and y′ = Q(y); [i.e. call the algorithm on the smaller vectors]

5. let x′ be the entries in x not used in y or z; [i.e. any entries equal to xi]

6. return (z′, x′, y′).

(a) Implement the algorithm in R, and test it on some random numbers.

quickSort <- function(x) {
n <- length(x)

if (n <= 1)

return(x)

i <- sample(n, 1) # pick a pivot at random

z <- x[x < x[i]]
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y <- x[x > x[i]]

xis <- x[x == x[i]] # in case of ties

return(c(Recall(z), xis, Recall(y)))

}

x <- rnorm(10000)

out <- quickSort(x)

(b) What is the complexity if xi is always the smallest element?

In this case we see g(n) = 2n + g(n − 1) + g(0), so g(n) = O(n2). The algorithm
relies on being able to divide the problem up to be efficient, so picking the smallest
element doesn’t work very well.

(c) Show that, if the pivot xi is the median element on each call, that the complexity is
at most O(n log2(n)).

In this case we get a recursion of the form g(n) = 2n+ 2g((n− 1)/2). Now suppose
that g(k) ≤Mk log2 k for some M and all k < n. Then

g(n) ≤ 2n+ 2M
n

2
log2

n

2
= 2n+Mn log2 n−Mn

≤Mn log2 n

provided that M ≥ 2. Hence g(n) = O(n log2 n).
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3. Back Solving. Here is a recursive algorithm to solve Ax = b where A is an upper
triangular matrix, using back substitution.

Function: solve Ax = b for x by back-substitution
Input: n× n upper triangular matrix A and vector b of length n
Output: vector x of length n solving Ax = b

1. If n = 1 return x = b/A;

2. create a vector x of length n;

3. set xn = bn/Ann;

4. set b′ = b1:(n−1) −A[1:(n−1),n]xn;

5. set A′ = A[1:(n−1),1:(n−1)];

6. solve A′x′ = b′ for x′ by back-substitution ;

7. set x[1:(n−1)] = x′;

8. return x.

(a) Implement this algorithm as a recursive function in R. Your function should take as
input an upper triangular n× n matrix A and return a solution x satisfying Ax = b.

backSolve <- function(A, b) {
n <- length(b)

if (nrow(A) != ncol(A))

stop("A must be a square matrix")

if (nrow(A) != n)

stop("Dimensions of A and b must match")

x = b[n]/A[n, n]

if (n == 1)

return(x)

A2 <- A[-n, -n, drop = FALSE]

b2 <- b[-n] - A[-n, n] * x

x = c(backSolve(A2, b2), x)

return(x)

}

(b) For n = 10, create an n × n upper triangular matrix A and a vector b of length n.
Check the solution from your function against backsolve() and solve().

> A <- matrix(0, 10, 10)

> A[upper.tri(A, diag = TRUE)] = rnorm(55)

> b <- rnorm(10)

> backSolve(A, b)

[1] 977.49 95.75 -526.03 -44.26 17.96 35.75 4.99 1.40

[9] 0.67 1.36

> solve(A, b)

[1] 977.49 95.75 -526.03 -44.26 17.96 35.75 4.99 1.40

[9] 0.67 1.36
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4. Longest Increasing Subsequence.∗

The object of this exercise is to write a function that, given a sequence of numbers a =
(a1, . . . , ak), returns Q(a) = (as1 , . . . , asL), the longest subsequence of a such that as1 <
· · · < asL . [Note that it is implicit in the idea of a subsequence that s1 < · · · < sk.]

(a) Write a function that, for each i, recursively calculates the longest increasing subse-
quence of (a1, . . . , ai−1, ai) that ends with ai. [Hint: remove the final element of a and
invoke the function on this shorter vector; then add ak to the longest subsequence
whose final element is less than ak.]

## Return longest increasing subsequences for first i entries input: x - a

## numeric vector output: a list of the same length as x, whose ith entry is

## the longest increasing subsequence of x[1],...,x[i] that ends with x[i].

liseqs <- function(x) {

## check length of x and finish if <= 1.

n <- length(x)

if (n == 0)

return(list()) else if (n == 1)

return(list(x))

## remove last element and recall function

x_s <- x[-n]

tmp <- Recall(x_s)

## if last element is smallest, longest sequence is just that value

if (min(x) == x[n])

return(c(tmp, list(x[n])))

## now get lengths of these subsequences

len <- lengths(tmp, FALSE)

## attach x[n] to longest subsequence whose final element is smaller

wh <- which.max(len * (x_s <= x[n])) # longest we can add x[n] to

out <- c(tmp, list(c(tmp[[wh]], x[n])))

out

}

liseqs(rnorm(10))

[[1]]

[1] 0.553

[[2]]

[1] 0.553 0.559

[[3]]

[1] -0.124

[[4]]

[1] -1.15
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[[5]]

[1] -0.124 0.384

[[6]]

[1] -1.15 -1.06

[[7]]

[1] 0.553 0.559 0.757

[[8]]

[1] 0.553 0.559 0.757 1.817

[[9]]

[1] 0.553 0.559 0.581

[[10]]

[1] -1.153 -1.060 -0.161

(b) Use this to return a function that solves the problem of finding Q(a).

This is now rather trivial.

longIncSub <- function(x) {
## invoke the earlier function, and return the longest subsequence

tmp <- liseqs(x)

wh <- which.max(lengths(tmp))

return(tmp[[wh]])

}

longIncSub(rnorm(10))

[1] -0.0537 0.1745 0.5944 0.8791

(c) Calculate the computational complexity of this method.

It is not hard to see that the code above just has to search through the list of vectors
ending with a1, . . . , ak−1 to find the longest, so this is an operation that is just linear
in k. Since this is recursed we have the relation f(k) = O(k) + f(k − 1), and it is
easy to check that this implies that f(k) = O(k2).
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