Statistical Programming

1. Cholesky Decomposition.

(a) Write a function with argument n to generate a random symmetric $n \times n$-positive definite matrix. To do this:

- generate an $n \times n$ matrix C whose entries are independent normal random variables;
- return $C C^{T}$.

Check your matrices are positive definite using the eigen() function.

```
randPDmat <- function(n) {
    C <- matrix(rnorm(n^2), n, n)
    out <- C %*% t(C)
    out
}
A <- randPDmat(8)
all(eigen(A)$value > 0) # are all eigenvalues positive?
[1] TRUE
```

(b) Implement the recursive Cholesky decomposition algorithm from the lecture.

```
# Function to find Cholesky decomposition of symmetric
myChol <- function(A) {
    n <- dim(A)[1]
    if (dim(A)[2] != n)
        stop("A must be a square matrix") # check n x n
    if (n == 1)
        return(sqrt(A))
    L <- matrix(0, n, n)
    L[1, 1] <- sqrt(A[1, 1]) #count as 1 op
    L[2:n, 1] <- A[2:n, 1]/L[1, 1] #n-1 ops
    L[1, 2:n] <- rep(0, n - 1)
    A22 = A[2:n, 2:n, drop = FALSE]
    newA = A22 - L[2:n, 1] %*% t(L[2:n, 1]) #2(n-1)^2 here
    # but n(n-1) possible
    L[2:n, 2:n] = myChol(newA)
    return(L)
}
```

(c) Test it using your function for generating positive definite matrices, and by comparing the answers to chol().

```
A <- randPDmat(6)
## chol() gives an upper triangular matrix,
## but can compare transpose to our answer:
t(chol(A)) - myChol(A) # all numerically 0
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$
$[1]$,	0	0	0	$0.00 \mathrm{e}+00$	0	0
$[2]$,	0	0	0	$0.00 \mathrm{e}+00$	0	0
$[3]$,	0	0	0	$0.00 \mathrm{e}+00$	0	0
$[4]$,	0	0	0	$2.22 \mathrm{e}-16$	0	0
$[5]$,	0	0	0	$-1.11 \mathrm{e}-16$	0	0
$[6]$,	0	0	0	$-2.78 \mathrm{e}-17$	0	0

(d) Create a function which takes a vector mu and a symmetric positive definite matrix Sigma and uses them to generate a multivariate normal vector $N_{n}(\mu, \Sigma)$. Your function should check that Sigma is positive definite using eigen() and symmetric using isSymmetric().

```
mvnorm <- function(mu, Sigma) {
    n <- nrow(Sigma)
    ## check matrix is valid
    if (min(eigen(Sigma)$values) <= 0)
        stop("Sigma must be positive definite")
    if (!isSymmetric(Sigma))
        stop("Sigma must be symmetric")
    ## use method from lecture
    L <- myChol(Sigma)
    z <- rnorm(n)
    x <- mu + L %*% z
    return(c(x))
}
```

2. Sorting. Here is an algorithm called 'Quicksort' for sorting the objects in a vector.

Function: sort a vector x
Input: \quad vector x of length n
Output: a vector $Q(x)$ containing entries of x arranged in ascending order

1. if $n \leq 1$ return x;
2. pick an arbitrary 'pivot' element $i \leq n$;
3. let $z=\left(x_{j} \mid x_{j}<x_{i}\right)$ and $y=\left(x_{j} \mid x_{j}>x_{i}\right)$;
4. let $z^{\prime}=Q(z)$ and $y^{\prime}=Q(y)$; [i.e. call the algorithm on the smaller vectors]
5. let x^{\prime} be the entries in x not used in y or z; [i.e. any entries equal to x_{i}]
6. return $\left(z^{\prime}, x^{\prime}, y^{\prime}\right)$.
(a) Implement the algorithm in R , and test it on some random numbers.
```
quickSort <- function(x) {
    n <- length(x)
    if (n <= 1)
        return(x)
    i <- sample(n, 1) # pick a pivot at random
    z <- x[x < x[i]]
```

```
        y <- x[x > x[i]]
        xis <- x[x == x[i]] # in case of ties
    return(c(Recall(z), xis, Recall(y)))
}
x <- rnorm(10000)
out <- quickSort(x)
```

(b) What is the complexity if x_{i} is always the smallest element?

In this case we see $g(n)=2 n+g(n-1)+g(0)$, so $g(n)=O\left(n^{2}\right)$. The algorithm relies on being able to divide the problem up to be efficient, so picking the smallest element doesn't work very well.
(c) Show that, if the pivot x_{i} is the median element on each call, that the complexity is at most $O\left(n \log _{2}(n)\right)$.
In this case we get a recursion of the form $g(n)=2 n+2 g((n-1) / 2)$. Now suppose that $g(k) \leq M k \log _{2} k$ for some M and all $k<n$. Then

$$
\begin{aligned}
g(n) & \leq 2 n+2 M \frac{n}{2} \log _{2} \frac{n}{2} \\
& =2 n+M n \log _{2} n-M n \\
& \leq M n \log _{2} n
\end{aligned}
$$

provided that $M \geq 2$. Hence $g(n)=O\left(n \log _{2} n\right)$.
3. Back Solving. Here is a recursive algorithm to solve $A x=b$ where A is an upper triangular matrix, using back substitution.

Function: solve $A x=b$ for x by back-substitution
Input: $\quad n \times n$ upper triangular matrix A and vector b of length n
Output: \quad vector x of length n solving $A x=b$

1. If $n=1$ return $x=b / A$;

2 . create a vector x of length n;
3 . set $x_{n}=b_{n} / A_{n n}$;
4. set $b^{\prime}=b_{1:(n-1)}-A_{[1:(n-1), n]} x_{n}$;
5. set $A^{\prime}=A_{[1:(n-1), 1:(n-1)]}$;
6. solve $A^{\prime} x^{\prime}=b^{\prime}$ for x^{\prime} by back-substitution ;
7. set $x_{[1:(n-1)]}=x^{\prime}$;
8. return x.
(a) Implement this algorithm as a recursive function in R . Your function should take as input an upper triangular $n \times n$ matrix A and return a solution x satisfying $A x=b$.

```
backSolve <- function(A, b) {
    n <- length(b)
    if (nrow(A) != ncol(A))
        stop("A must be a square matrix")
    if (nrow(A) != n)
        stop("Dimensions of A and b must match")
    x = b[n]/A[n, n]
    if (n == 1)
        return(x)
    A2 <- A[-n, -n, drop = FALSE]
    b2 <- b[-n] - A[-n, n] * x
    x = c(backSolve(A2, b2), x)
    return(x)
}
```

(b) For $n=10$, create an $n \times n$ upper triangular matrix A and a vector b of length n. Check the solution from your function against backsolve() and solve().

```
> A <- matrix(0, 10, 10)
> A[upper.tri(A, diag = TRUE)] = rnorm(55)
> b <- rnorm(10)
> backSolve(A, b)
```

[1]	977.49	95.75	-526.03	-44.26	17.96	35.75	4.99
[9]	0.67	1.36		1.40			
> solve(A, b)							
[1]	977.49	95.75	-526.03	-44.26	17.96	35.75	4.99
[9]	0.67	1.36					1.40

4. Longest Increasing Subsequence.*

The object of this exercise is to write a function that, given a sequence of numbers $\mathbf{a}=$ $\left(a_{1}, \ldots, a_{k}\right)$, returns $Q(\mathbf{a})=\left(a_{s_{1}}, \ldots, a_{s_{L}}\right)$, the longest subsequence of a such that $a_{s_{1}}<$ $\cdots<a_{s_{L}}$. [Note that it is implicit in the idea of a subsequence that $s_{1}<\cdots<s_{k}$.]
(a) Write a function that, for each i, recursively calculates the longest increasing subsequence of $\left(a_{1}, \ldots, a_{i-1}, a_{i}\right)$ that ends with a_{i}. [Hint: remove the final element of \mathbf{a} and invoke the function on this shorter vector; then add a_{k} to the longest subsequence whose final element is less than a_{k}.]

```
## Return longest increasing subsequences for first i entries input: x - a
## numeric vector output: a list of the same length as x, whose ith entry is
## the longest increasing subsequence of x[1],...,x[i] that ends with x[i].
liseqs <- function(x) {
    ## check length of x and finish if <= 1.
    n <- length(x)
    if (n == 0)
        return(list()) else if (n == 1)
        return(list(x))
    ## remove last element and recall function
    x_s <- x[-n]
    tmp <- Recall(x_s)
    ## if last element is smallest, longest sequence is just that value
    if (min(x) == x[n])
        return(c(tmp, list(x[n])))
    ## now get lengths of these subsequences
    len <- lengths(tmp, FALSE)
    ## attach x[n] to longest subsequence whose final element is smaller
    wh <- which.max(len * (x_s <= x[n])) # longest we can add x[n] to
    out <- c(tmp, list(c(tmp[[wh]], x[n])))
    out
}
liseqs(rnorm(10))
[[1]]
[1] 0.553
[[2]]
[1] 0.553 0.559
[[3]]
[1] -0.124
[[4]]
[1] -1.15
```

```
[[5]]
[1] -0.124 0.384
[[6]]
[1] -1.15 -1.06
[[7]]
[1] 0.553 0.559 0.757
[[8]]
[1] 0.553 0.559 0.757 1.817
[[9]]
[1] 0.553 0.559 0.581
[[10]]
[1] -1.153 -1.060 -0.161
```

(b) Use this to return a function that solves the problem of finding $Q(\mathbf{a})$.

This is now rather trivial.

```
longIncSub <- function(x) {
    ## invoke the earlier function, and return the longest subsequence
    tmp <- liseqs(x)
    wh <- which.max(lengths(tmp))
    return(tmp[[wh]])
}
longIncSub(rnorm(10))
[1] -0.0537
```

(c) Calculate the computational complexity of this method.

It is not hard to see that the code above just has to search through the list of vectors ending with a_{1}, \ldots, a_{k-1} to find the longest, so this is an operation that is just linear in k. Since this is recursed we have the relation $f(k)=O(k)+f(k-1)$, and it is easy to check that this implies that $f(k)=O\left(k^{2}\right)$.

