Statistical Programming

1. Cholesky Decomposition.

(a) Write a function with argument n to generate a random symmetric $n \times n$-positive definite matrix. To do this:

- generate an $n \times n$ matrix C whose entries are independent normal random variables;
- return $C C^{T}$.

Check your matrices are positive definite using the eigen() function.
(b) Implement the recursive Cholesky decomposition algorithm from the lecture.
(c) Test it using your function for generating positive definite matrices, and by comparing the answers to chol().
(d) Create a function which takes a vector mu and a symmetric positive definite matrix Sigma and uses them to generate a multivariate normal vector $N_{n}(\mu, \Sigma)$. Your function should check that Sigma is positive definite using eigen() and symmetric using isSymmetric().
2. Sorting. Here is an algorithm called 'Quicksort' for sorting the objects in a vector.

Function: sort a vector x
Input: vector x of length n
Output: \quad a vector $Q(x)$ containing entries of x arranged in ascending order

1. if $n \leq 1$ return x;
2. pick an arbitrary 'pivot' element $i \leq n$;
3. let $z=\left(x_{j} \mid x_{j}<x_{i}\right)$ and $y=\left(x_{j} \mid x_{j}>x_{i}\right)$;
4. let $z^{\prime}=Q(z)$ and $y^{\prime}=Q(y)$; [i.e. call the algorithm on the smaller vectors]
5. let x^{\prime} be the entries in x not used in y or z; [i.e. any entries equal to x_{i}]
6. return $\left(z^{\prime}, x^{\prime}, y^{\prime}\right)$.
(a) Implement the algorithm in R , and test it on some random numbers.
(b) What is the complexity if x_{i} is always the smallest element?
(c) Show that, if the pivot x_{i} is the median element on each call, that the complexity is at most $O\left(n \log _{2}(n)\right)$.
7. Back Solving. Here is a recursive algorithm to solve $A x=b$ where A is an upper triangular matrix, using back substitution.

Function: solve $A x=b$ for x by back-substitution
Input: $\quad n \times n$ upper triangular matrix A and vector b of length n
Output: \quad vector x of length n solving $A x=b$

1. If $n=1$ return $x=b / A$;
2. create a vector x of length n;

3 . set $x_{n}=b_{n} / A_{n n}$;
4. set $b^{\prime}=b_{1:(n-1)}-A_{[1:(n-1), n]} x_{n}$;
5. set $A^{\prime}=A_{[1:(n-1), 1:(n-1)]}$;
6. solve $A^{\prime} x^{\prime}=b^{\prime}$ for x^{\prime} by back-substitution ;
7. set $x_{[1:(n-1)]}=x^{\prime}$;
8. return x.
(a) Implement this algorithm as a recursive function in R. Your function should take as input an upper triangular $n \times n$ matrix A and return a solution x satisfying $A x=b$.
(b) For $n=10$, create an $n \times n$ upper triangular matrix A and a vector b of length n. Check the solution from your function against backsolve() and solve().

4. Longest Increasing Subsequence.*

The object of this exercise is to write a function that, given a sequence of numbers $\mathbf{a}=$ $\left(a_{1}, \ldots, a_{k}\right)$, returns $Q(\mathbf{a})=\left(a_{s_{1}}, \ldots, a_{s_{L}}\right)$, the longest subsequence of a such that $a_{s_{1}}<$ $\cdots<a_{s_{L}}$. [Note that it is implicit in the idea of a subsequence that $s_{1}<\cdots<s_{k}$.]
(a) Write a function that, for each i, recursively calculates the longest increasing subsequence of $\left(a_{1}, \ldots, a_{i-1}, a_{i}\right)$ that ends with a_{i}. [Hint: remove the final element of a and invoke the function on this shorter vector; then add a_{k} to the longest subsequence whose final element is less than a_{k}.]
(b) Use this to return a function that solves the problem of finding $Q(\mathbf{a})$.
(c) Calculate the computational complexity of this method.

