Statistical Programming

Worksheet 4

1. Cholesky Decomposition.

- (a) Write a function with argument ${\tt n}$ to generate a random symmetric $n \times n$ -positive definite matrix. To do this:
 - generate an $n \times n$ matrix C whose entries are independent normal random variables;
 - return CC^T .

Check your matrices are positive definite using the eigen() function.

- (b) Implement the recursive Cholesky decomposition algorithm from the lecture.
- (c) Test it using your function for generating positive definite matrices, and by comparing the answers to chol().
- (d) Create a function which takes a vector $\mathbf{m}\mathbf{u}$ and a symmetric positive definite matrix Sigma and uses them to generate a multivariate normal vector $N_n(\mu, \Sigma)$. Your function should check that Sigma is positive definite using eigen() and symmetric using isSymmetric().
- 2. Sorting. Here is an algorithm called 'Quicksort' for sorting the objects in a vector.

Function: sort a vector x

Input: vector x of length n

Output: a vector Q(x) containing entries of x arranged in ascending order

- 1. if $n \leq 1$ return x;
- 2. pick an arbitrary 'pivot' element $i \leq n$;
- 3. let $z = (x_i \mid x_i < x_i)$ and $y = (x_i \mid x_i > x_i)$;
- 4. let z' = Q(z) and y' = Q(y); [i.e. call the algorithm on the smaller vectors]
- 5. let x' be the entries in x not used in y or z; [i.e. any entries equal to x_i]
- 6. return (z', x', y').
- (a) Implement the algorithm in R, and test it on some random numbers.
- (b) What is the complexity if x_i is always the smallest element?
- (c) Show that, if the pivot x_i is the median element on each call, that the complexity is at most $O(n \log_2(n))$.

3. Back Solving. Here is a recursive algorithm to solve Ax = b where A is an upper triangular matrix, using back substitution.

Function: solve Ax = b for x by back-substitution

Input: $n \times n$ upper triangular matrix A and vector b of length n

Output: vector x of length n solving Ax = b

- 1. If n = 1 return x = b/A;
- 2. create a vector x of length n;
- 3. set $x_n = b_n/A_{nn}$;
- 4. set $b' = b_{1:(n-1)} A_{[1:(n-1),n]}x_n;$
- 5. set $A' = A_{[1:(n-1),1:(n-1)]}$;
- 6. solve A'x' = b' for x' by back-substitution;
- 7. set $x_{[1:(n-1)]} = x'$;
- 8. return x.
- (a) Implement this algorithm as a recursive function in R. Your function should take as input an upper triangular $n \times n$ matrix A and return a solution x satisfying Ax = b.
- (b) For n = 10, create an $n \times n$ upper triangular matrix A and a vector b of length n. Check the solution from your function against backsolve() and solve().
- 4. Longest Increasing Subsequence.*

The object of this exercise is to write a function that, given a sequence of numbers $\mathbf{a} = (a_1, \ldots, a_k)$, returns $Q(\mathbf{a}) = (a_{s_1}, \ldots, a_{s_L})$, the longest subsequence of \mathbf{a} such that $a_{s_1} < \cdots < a_{s_L}$. [Note that it is implicit in the idea of a subsequence that $s_1 < \cdots < s_k$.]

- (a) Write a function that, for each i, recursively calculates the longest increasing subsequence of $(a_1, \ldots, a_{i-1}, a_i)$ that ends with a_i . [Hint: remove the final element of \mathbf{a} and invoke the function on this shorter vector; then add a_k to the longest subsequence whose final element is less than a_k .]
- (b) Use this to return a function that solves the problem of finding $Q(\mathbf{a})$.
- (c) Calculate the computational complexity of this method.