
Part A Simulation and Statistical Programming HT15

Lecturer: Geoff Nicholls

University of Oxford

Lecture 10: Recursion, Efficiency and Runtime.

Overview for lecture 10

1. Recursive evaluation

2. Extended example: Cholesky Factorization

3. Runtime analysis

4. Extended example: sorting

Recursion

Recursive programmes call themselves.

Example: Plan and write a recursive function for f(x) = x!.

f(1) = 1, f(x) = xf(x− 1) for x > 1.

Our factorial function returns x! = 1 on input x = 1 and otherwise

calls itself to evaluate (x− 1)! and multiplies this by x.

factorial<-function(x) {

if (x==1) return(1)

if (x>1) return(x*factorial(x-1))

stop(’x must be a positive integer’)

}

Each function in the nested sequence of calls to factorial() has

its own variable environment with its own distinct version of the

local variable x.

Recursive algorithms are often shorter and clearer than the corre-

sponding implementation via for or while. However, they may

be demanding of memory, if each level of recursion makes its own

copy of local variables.

Example: Cholesky Factorization

Recall simulation for the multivariate normal, X ∼ N(µ,A) with

X = (X1, X2, ..., Xn), and A a n× n symmetric positive definite

variance matrix.

We find a matrix L so that

A = LLT .

If Z = (Z1, Z2, ..., Zn) Zi ∼ N(0, 1), i = 1, 2, ..., n and we set

X = µ+ LZ,

then X ∼ N(µ,A).

There are many choices for L. The Cholesky factorization is

particularly neat. Because A is positive definite, there is a lower

triangular matrix L satisfying A = LLT .

Here is a recursive algorithm for L. Chop A and L up into blocks

A =











a11 AT
21

A21 A22











=









1× 1 1× (n− 1)

(n− 1)× 1 (n− 1)× (n− 1)









Here A21 = A2:n,1 is (n−1)×1 and A22 = A2:n,2:n is itself lower

triangular and (n− 1)× (n− 1). Similarly

L =











L11 01×(n−1)

L21 L22











Since L is lower triangular it is zero above the diagonal, and in

particular all the entries in the top row except the first are zero.

Since A = LLT ,

(

a11 AT
21

A21 A22

)

=

(

L11 01×(n−1)
L21 L22

)

(

L11 L21
T

0(n−1)×1 LT
22

)

=











L2
11 L11L21

T

L11L21 L22L22
T + L21L21

T











so L11 =
√
a11, L21 = A21/

√
a11 and the A22 block gives

A22 − L21L21
T = L22L22

T

Ã = L̃L̃T now (n− 1)× (n− 1)

To solve for L22, we need the Cholesky factorization of the (n−
1) × (n − 1) matrix Ã = A22 − L21L21

T , so we have reduced

the problem by one dimension. Finally, if n = 1 so A is a scalar,

L =
√
A terminates the recursion.

Runtime analysis

We measure the runtime in units of operations. This might be the

number of additions, subtractions, divisions and multiplications.

For a sorting algorithm we can count the number of comparisons.

We typically give the asymptotic run time - as a function of the

input size, for large values of the input. We give the order of the

function - quadratic, cubic etc. ∗ More efficient algorithms have

(asymptotically at least) smaller run times.

We can give the worst case (for any input) or the average case

(usually more interesting but harder to calculate).

∗If the runtime is g(n) and g(n) is O(h(n)) then h(n)/g(n) → c as n → ∞.

Here is an algorithm to find the smallest entry of n > 1 numbers.

my.min<-function(x) {

a=x[1]

for (k in 2:length(x)) {

if (x[k]<a) a<-x[k]

}

a

}

Let g(x) be the number of comparisons. Clearly g(x) = n − 1
independent of x, so the runtime is O(n).

What is the runtime of my.chol()? Let g(A) be the number of

flops to factorize n× n matrix An.

It took 1 + (n− 1) + (n− 1)2 + (n− 1)2 additions, subtractions,

multiplications and divisions (called ’flops’) to solve for L11 and

calculate the new A. The highest power is 2n2.

We have to repeat this for n → n − 1 → n − 2... → 1. Since
∑n

i=1 2n
2 = 2n(n + 2)(2n + 1)/6, so this implementation has

approximately g(An) ≃ 2n3/3 flops or O(n3).

If we had exploited symmetry we could get this down to about

n3/3 but we cant change the order (still O(n3)).

#Cholesky
my.chol<-function(A) {

n=dim(A)[1] #assume nxn
if (n==1) return(sqrt(A))

L=matrix(0,n,n)
L[1,1]=sqrt(A[1,1]) #count as 1 op
L[2:n,1]=A[2:n,1]/L[1,1] #n-1 ops
L[1,2:n]=rep(0,n-1)

A22=A[2:n,2:n,drop=FALSE]
newA=A22-L[2:n,1]%*%t(L[2:n,1]) #2(n-1)^2 here

#but n(n-1) possible
L[2:n,2:n]=my.chol(newA)

return(L)
}

Example: runtime and sorting algorithm Here are a couple of R

algorithms to sort a list x = (x1, x2, ..., xn) of n numbers.

Simple sort: find the smallest element x(1). Suppose it is the

kth element. Remove the kth element from the list, so y =
(x1, ..., xk−1, xk+1, ..., xn). Return the vector (x(1), f(y)).

This takes (n − 1) + (n − 2) + ... + 1 = O(n2) comparisons

independent of the order of the numbers in x.

Bubble sort: sweep through the vector, swapping xi and xi+1 if

xi > xi+1. Repeat this till the vector is in order. After i sweeps

the last i elements x(n−i), ..., x(n) must be in their correct places

so the algorithm terminates after n sweeps at most with each

sweep using n− 1 comparisons.

This takes O(n2) comparisons at worst, and O(n) at best.

Merge sort let Merge sort be a function f(x) that takes as input

an array x of n numbers and returns a sorted array x′.

[0] If x has one entry it is sorted so return x′ = x. Otherwise...

[1] Split x into two halves y = (x1, ..., x⌊n/2⌋) and z = (x⌊n/2⌋+1, ..., n).

[2] Sort y and z using Merge sort so y′ = f(y) and z′ = f(z).

[3] Let x′ = g(y′, z′) where g() is a function that takes as input

two sorted vectors and merges their elements to return the sorted

union of y′ and z′ (two sorted vectors of n/2 elements can be

merged in n− 1 operations at worst).

[4] Return the sorted array x′.

The runtime of Merge sort is O(n log(n)) for n-component x so it

is preferred over Bubble sort. We wouldnt use an O(n2) algorithm

when an O(n log(n)) algorithm is available.

Proof (non-examinable): Suppose n = 2k for simplicity. Let gk
be the number of comparisons to sort this vector. Merge sort

splits the vector into two vectors of length n/2 = 2k−1. These

two sub-vectors have to be sorted, which is 2gk−1 comparisons.

The number of comparisons to merge the sorted sub-vectors is

2× (n/2)− 1 = 2k − 1 so

gk = 2gk−1 + 2k − 1

and g1 = 1. The homogeneous solutions are gk = A2k with

particular solution k2k + 1. Applying the initial condition gives

gk = (k − 1)2k + 1 or g(x) = n log2(n) − n + 1. We conclude

that Merge sort needs O(n log2(n)) comparisons, irrespective of

the input.

