
Part A Simulation and Statistical programming HT15

Geoff Nicholls

Lecture 12: Solving Linear Systems.

Overview for lecture 12

1. R commands for matrices and vectors (reference slides)

2. Solving linear systems Ax = b.

(a) Forwards and Backwards substitution

(b) Solving Ax = b for full rank A using LU factorization

(c) Regression.

(d) Over-determined systems. Numerical stability and QR fac-

torization.

Solving linear systems

Suppose A is a real n×p matrix of rank p with p ≤ n, and entries

ai,j, and b is an n× 1 real vector.

Many important numerical problems reduce to

solve Ax = b for x.

If p < n, then the system is over-determined. We come back to

this case later. We will look at how the equations Ax = b may be

solved when p = n so that A−1 exists and x = A−1b.

R has a function solve(A) returning A−1 so we could compute

x=solve(A)%*%b.

We will see that this is inefficient and numerically unstable, and

find that the best method depends on the properties of A.

Forward and Backward elimination

Suppose A is lower triangular so that ai,j = 0 for i > j. Solve

Ax = b for x using forward substitution. Chop the n equations in

Ax = b into blocks

A =

(

a11 01×(n−1)
A21 A22

)

Here A21 = A2:n,1 is (n−1)×1 and A22 = A2:n,2:n is itself lower

triangular and (n− 1)× (n− 1). Now Ax = b is

(

a11 01×(n−1)
A21 A22

)(

x1
x2:n

)

=

(

b1
b2:n

)

The top row of the matrix says a11x1 = b1 so x1 = b1/a11.

The bottom block of the matrix has (n− 1) rows

(A21 A22)

(

x1
x2:n

)

= b2:n

A21x1 +A22x2:n = b2:n

A22x2:n = b2:n −A21x1

Ãx̃ = b̃ now (n− 1)× (n− 1)

We are left with a smaller version of the problem we started with.

It took 2(n − 1) + 1 additions, subtractions, multiplications and

divisions (called ’flops’) to solve for x1 and calculate Ã and b̃.
Since

∑n
i=1(2i− 1) = n2, forward solving is n2 flops.

R has forwardsolve(A,b) for forward elimination for n×n lower

triangular A and n× 1 b. There is backsolve(A,b) for backward

elimination on upper triangular A.

LU factorization

The most efficient method for solving Ax = b for a general full

rank n× n square matrix is to factorize

A = LU

into a lower L and upper U triangular matrices ∗ at a cost of

2n3/3 + O(n2) flops (we havn’t proven this, it’s just assertion)

and then solving LUx = b by setting y = Ux and then

solving Ly = b (forwards)

and then

solving Ux = y (backwards).

The function solve(A,b) uses this method. The two elimination

steps take 2n2 flops so the leading term in the number of flops is

2n3/3.
∗if there is no LU factorization we seek A = PLU with P a permutation.

Normal linear models

Consider the aids data

> d = read.table("AIDS.txt")

> head(d)

cases time time.sq

1 185 1 1

2 200 2 4

3 293 3 9

4 374 4 16

5 554 5 25

6 713 6 36

> (n<-dim(d)[1])

[1] 25

Suppose we want to fit the normal linear regression model

yi = α+ β1xi + β2x
2
i + εi, i = 1, 2, . . . , n

with yi the number of cases in month xi, and εi ∼ N(0, σ2) iid

normal errors. In vector form the model is
















y1
y2
.
.
.
yn

















=



















1 x1 x21
1 x2 x22
. . .
. . .
. . .
1 xn x2n























α
β1
β2



+

















ε1
ε2
.
.
.
εn

















or

y = Xθ + ε

with θ = (α, β1, β2)
T etc.

The R commands to fit this normal linear model are

d.lm=lm(cases ∼time+time.sq,data=d)

summary(d.lm)

Here d.lm is a list full of results from the model fit output by

lm(). Notice the R formula notation cases∼time+time.sq.

The columns of summary(d.lm) output give θ̂i, an estimate σ̂i
of the error in θ̂i, and columns for the test H0: θi = 0.

If the model is good, the regression should interpolate the data

with normal residuals y −Xθ̂. We can check this using a normal

qq-plot for the residuals,

qqnorm(residuals(d.lm)); qqline(residuals(d.lm)).

What’s inside the lm() box?

The equations Xθ = y are over-determined (more equations than

variables, n > p, we cant expect a solution), so minimize R(θ) =
(y −Xθ)T (y −Xθ); get Xθ as close as we can to y.

R(θ) =
n
∑

i=1

(yi − α− β1xi − β2x
2
i)

2

= (y −Xθ)T (y −Xθ)

= (Xθ)TXθ − 2yTXθ + yTy

Taking partial derivatives wrt θ and imposing ∂R
∂θ = 0 (p equations)

leads to the p normal equations

XTXθ = XTy

for θ in this over-determined system. This is Ax = b with A =
XTX, x = θ and b = XTy.

Solving the normal equations using QR factorization

We could use LU factorization to solve the normal equations.

However QR factorization is usually best as it is more stable nu-

merically.

X =





1 −1
0 10−10

0 0



 XTX =

(

1 −1
−1 1 + 10−20

)

At machine precision 1+ 10−20 and 1 are equal so XTX appears

to be singular. Any method (like LU) that solves (XTX)θ = XTy
by first computing XTX will fail on this problem.

Instead, factorize X = QR (Q is n×p and orthogonal, so QTQ =
Ip×p, and R is p× p, upper triangular, and has positive entries on

the diagonal). This takes 2np2 flops (assertion). Since

XTX = RTQTQR,

the normal equations

XTXθ = XTy

are

RTRθ = RTQTy.

We can solve these by

solving Rθ = QTy (backwards)

(np+p2 flops) for an overall leading order cost of 2np2 flops. The

functions qr.solve(X,y) and lm() use this method. LU would

take np2 but may fail.

In R,

X=cbind(rep(1,n),d$time,d$time.sq)

followed by

d.theta=qr.solve(X,d$cases)

to give the regression parameters.

