Part A Simulation and Statistical programming HT 15

Geoff Nicholls

Lecture 12: Solving Linear Systems.

Overview for lecture 12

1. R commands for matrices and vectors (reference slides)

2. Solving linear systems Ax = b.

(a) Forwards and Backwards substitution
(b) Solving Ax = b for full rank A using LU factorization

(c) Regression.

(d) Over-determined systems. Numerical stability and QR fac-
torization.

Solving linear systems

Suppose A is a real n X p matrix of rank p with p < n, and entries
a; j, and b is an n X 1 real vector.

Many important numerical problems reduce to

solve Ax = b for x.

If p < n, then the system is over-determined. We come back to
this case later. We will look at how the equations Ax = b may be
solved when p = n so that A~1 exists and x = A~ 1b.

R has a function solve(A) returning A~ ! so we could compute

x=solve (A)%*%Db.

We will see that this is inefficient and numerically unstable, and
find that the best method depends on the properties of A.

Forward and Backward elimination

Suppose A is lower triangular so that a; j = 0 for ¢ > 3. Solve
Ax = b for x using forward substitution. Chop the n equations in
Ax = b into blocks

A — (a11 le(n—l))
Ag1 Ao

Here A9y = Ao 1is (n—1) x 1 and Agg = Ag.p 9.y is itself lower
triangular and (n — 1) X (n —1). Now Ax = b is

(all 01% (n—1))(T):(b1)
Agr Az T2:n b2:n

The top row of the matrix says aj1x; = by so x1 = by /aqq.

The bottom block of the matrix has (n — 1) rows

(At Az) (21) = b

T2:n
Ag1x1 + A22x2:n = b2
Agoxo:y = boy — A2177
Az = b now (n—1) X (n — 1)

We are left with a smaller version of the problem we started with.

It took 2(n — 1) 4+ 1 additions, subtractions, multiplications and
divisions (called 'flops') to solve for xy and calculate A and b.
Since Z?;“:l(% —1) = n?. forward solving is n? flops.

R has forwardsolve (A,b) for forward elimination for n X n lower
triangular A and n X 1 b. There is backsolve(A,b) for backward
elimination on upper triangular A.

LU factorization
The most efficient method for solving Az = b for a general full
rank n X m square matrix is to factorize

A=LU
into a lower L and upper U triangular matrices ™ at a cost of
2n3/3 + O(nQ) flops (we havn’'t proven this, it's just assertion)
and then solving LUx = b by setting y = Ux and then

*

solving Ly = b (forwards)
and then
solving Ux = y (backwards).

The function solve(A,b) uses this method. The two elimination
stegps take 2n2 flops so the leading term in the number of flops is
2n° /3.

*if there is no LU factorization we seek A = PLU with P a permutation.

Normal linear models
Consider the aids data

> d = read.table("AIDS.txt")
> head(d)
cases time time.sq

1 185 1 1
2 200 2 4
3 293 3 9
4 374 4 16
5 564 5 25
6 713 6 36

> (n<-dim(d) [1])
[1] 25

Suppose we want to fit the normal linear regression model

yi:@+51xi+52x%‘|—5i, ’1:21,2,...,77/

with y; the number of cases in month z;, and ; ~ N(0, ¢?) iid
normal errors. In vector form the model is

) (ind), L (2

BRI AT VN
Kyn) \1 Tn x%) KEn)

or
y = X0+c¢
with 0 = («, B, 52)T etc.

The R commands to fit this normal linear model are
d.1lm=1m(cases ~time+time.sq,data=d)
summary (d.1m)

Here d.1m is a list full of results from the model fit output by
1m(). Notice the R formula notation cases~time+time.sq.

A

The columns of summary(d.lm) output give 6;, an estimate &;
of the error in 6;, and columns for the test HO: 6; = 0.

If the model is good, the regression should interpolate the data
with normal residuals y — X60. We can check this using a normal
qgqg-plot for the residuals,

qgnorm(residuals(d.1m)); qqline(residuals(d.lm)).

What's inside the 1m() box?

The equations X6 = y are over-determined (more equations than
variables, n > p, we cant expect a solution), so minimize R(0) =
(y — X0)''(y — X6); get X6 as close as we can to v.

R(O) = Y (y; — a— Brz; — Box?)?
1=1

= (y—X0)'(y — X0)
= (X0)'X0 —2y" X0 + ¢y

Taking partial derivatives wrt 8 and imposing %]g” = 0 (p equations)
leads to the p normal equations

xXT'x0=x"y

for @ in this over-determined system. This is Az = b with A =
XX, 2=6and b= X1y

Solving the normal equations using QR factorization

We could use LU factorization to solve the normal equations.
However QR factorization is usually best as it is more stable nu-
merically.

1 —1

_ ~10 Ty (1 —1

At machine precision 1 + 1020 and 1 are equal so XTx appears
to be singular. Any method (like LU) that solves (X1 X)8 = X1y
by first computing X1 X will fail on this problem.

Instead, factorize X = QR (@) is n X p and orthogonal, so QTQ =
Ipxp, and R is p X p, upper triangular, and has positive entries on

the diagonal). This takes an2 flops (assertion). Since
xX'x = RTQTQR,
the normal equations
xT'xo=x"y
are
RT'RO = RTQ'y.
We can solve these by

solving RO = QTy (backwards)

(np—l—p2 flops) for an overall leading order cost of an2 flops. The
functions qr.solve(X,y) and 1lm() use this method. LU would
take np2 but may fail.

In R,
X=cbind(rep(1,n) ,d$time,d$time.sq)
followed by

d.theta=qr.solve(X,d$cases)

to give the regression parameters.

