Part A Simulation and Statistical programming HT15

Geoff Nicholls

Lecture 12: reference slides for matrices in R
R commands for matrices and vectors

Here are some slides of R commands for matrices and vectors. Please refer back to them in the practical as needed.
Vectors and Matrices in R

Matrices can be constructed using the functions `matrix()`, `cbind()` or `rbind()`.

`matrix(data, nrow, ncol)`
data is a vector of nrow*ncol values

`cbind(d1, d2,, dm)`
d1, , dm are vectors (columns)

`rbind(r1, r2,,rn)`
r1, ... , rn are vectors (rows)
Accessing elements

If X is a matrix we can access the element in the ith row and jth column using $X[i,j]$

We can access the ith row using $X[i,]$, and the jth column using $X[,j]$.

These commands result in an answer that is a vector with no dimension information kept. If we want to maintain the result as a row or column vector we use the option drop = FALSE i.e. $X[i, \text{drop = FALSE}]$ and $X[,j,\text{drop = FALSE}]$

If we want to find which elements satisfy a certain property we can use the \texttt{which()} command.

\texttt{which(X >= 0, arr.ind = TRUE)}
Matrix properties
There are a few useful functions that return basic properties of matrices

- **dim()** returns the number of rows and columns
- **det()** returns the determinant of a square matrix
- **diag()** returns the diagonal entries of a matrix
 OR turns a vector into a diagonal matrix.
 `sum(diag())` can be used to calculate the trace.
- **t()** returns the transpose of a matrix
- **upper.tri()** returns a matrix of logical elements with
 TRUE for the upper triangular elements.
- **lower.tri()** returns a matrix of logical elements with
 TRUE for the lower triangular elements.
- **eigen()** Computes eigenvalues and eigenvectors of real
 or complex matrices.
Matrix arithmetic

\[X + Y \] element-wise addition (matrices must conform)
\[X + 2 \] addition of 2 to each element of \(X \)
\[X \times Y \] element-wise multiplication (matrices must conform)
\[X \times 2 \] multiplication of each element of \(X \) by 2
\[X \%*\% Y \] matrix multiplication (matrices must conform)
\[\text{crossprod}(Y, X) \] calculates \(Y^T X \) efficiently
\[\text{crossprod}(Y) \] calculates \(Y^T Y \)
\[\text{solve}(X) \] returns the inverse of a square matrix.
\[\text{solve}(X, b) \] Solves a system of linear equations \(X\theta = b \)
\[\text{backsolve}(A, b) \] Solves a system of linear equations \(A\theta = b \) where the coefficient matrix \(A \) is upper or lower triangular.