Lecture 10: Recursion, Efficiency and Runtime.
Overview for lecture 10

1. Recursive evaluation

2. Extended example: Cholesky Factorization

3. Runtime analysis

4. Extended example: sorting
Recursion
Recursive programmes call themselves.

Example: Plan and write a recursive function for \(f(x) = x! \).

\[
\begin{align*}
 f(1) &= 1, \\
 f(x) &= x f(x-1) & \text{for } x > 1.
\end{align*}
\]

Our factorial function returns \(x! = 1 \) on input \(x = 1 \) and otherwise calls itself to evaluate \((x - 1)! \) and multiplies this by \(x \).

```r
factorial<-function(x) {
    if (x==1) return(1)
    if (x>1) return(x*factorial(x-1))
    stop(’x must be a positive integer’)
}
```
Each function in the nested sequence of calls to `factorial()` has its own variable environment with its own distinct version of the local variable \(x \).

Recursive algorithms are often shorter and clearer than the corresponding implementation via `for` or `while`. However, they may be demanding of memory, if each level of recursion makes its own copy of local variables.
Example: Cholesky Factorization

Recall simulation for the multivariate normal, $X \sim N(\mu, A)$ with $X = (X_1, X_2, \ldots, X_n)$, and A a $n \times n$ symmetric positive definite variance matrix.

We find a matrix L so that

$$A = LL^T.$$

If $Z = (Z_1, Z_2, \ldots, Z_n)$ $Z_i \sim N(0, 1), i = 1, 2, \ldots, n$ and we set

$$X = \mu + LZ,$$

then $X \sim N(\mu, A)$.

There are many choices for L. The Cholesky factorization is particularly neat. Because A is positive definite, there is a lower triangular matrix L satisfying $A = LL^T$.
Here is a recursive algorithm for L. Chop A and L up into blocks

$$A = \begin{pmatrix} a_{11} & A_{21}^T \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} 1 \times 1 & 1 \times (n - 1) \\ (n - 1) \times 1 & (n - 1) \times (n - 1) \end{pmatrix}$$

Here $A_{21} = A_{2:n,1}$ is $(n - 1) \times 1$ and $A_{22} = A_{2:n,2:n}$ is itself lower triangular and $(n - 1) \times (n - 1)$. Similarly

$$L = \begin{pmatrix} L_{11} & 0_{1 \times (n-1)} \\ L_{21} & L_{22} \end{pmatrix}$$

Since L is lower triangular it is zero above the diagonal, and in particular all the entries in the top row except the first are zero.
Since \(A = LL^T \),

\[
\begin{pmatrix}
 a_{11} & A_{21}^T \\
 A_{21} & A_{22}
\end{pmatrix}
= \begin{pmatrix}
 L_{11} & 0_{1 \times (n-1)} \\
 L_{21} & L_{22}
\end{pmatrix}
\begin{pmatrix}
 L_{11} & L_{21}^T \\
 0_{(n-1) \times 1} & L_{22}^T
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 L_{11}^2 & L_{11}L_{21}^T \\
 L_{11}L_{21} & L_{22}L_{22}^T + L_{21}L_{21}^T
\end{pmatrix}
\]

so \(L_{11} = \sqrt{a_{11}} \), \(L_{21} = A_{21}/\sqrt{a_{11}} \) and the \(A_{22} \) block gives

\[
A_{22} - L_{21}L_{21}^T = L_{22}L_{22}^T
\]

\[
\tilde{A} = \tilde{L}\tilde{L}^T \quad \text{now} \quad (n-1) \times (n-1)
\]

To solve for \(L_{22} \), we need the Cholesky factorization of the \((n-1) \times (n-1)\) matrix \(\tilde{A} = A_{22} - L_{21}L_{21}^T \), so we have reduced the problem by one dimension. Finally, if \(n = 1 \) so \(A \) is a scalar, \(L = \sqrt{A} \) terminates the recursion.
Runtime analysis

We measure the runtime in units of operations. This might be the number of additions, subtractions, divisions and multiplications. For a sorting algorithm we can count the number of comparisons.

We typically give the asymptotic run time - as a function of the input size, for large values of the input. We give the order of the function - quadratic, cubic etc. * More efficient algorithms have (asymptotically at least) smaller run times.

We can give the worst case (for any input) or the average case (usually more interesting but harder to calculate).

*If the runtime is $g(n)$ and $g(n)$ is $O(h(n))$ then $h(n)/g(n) \to c$ as $n \to \infty$.
Here is an algorithm to find the smallest entry of \(n > 1 \) numbers.

```r
my.min<-function(x) {
    a=x[1]
    for (k in 2:length(x)) {
        if (x[k]<a) a<-x[k]
    }
    a
}
```

Let \(g(x) \) be the number of comparisons. Clearly \(g(x) = n - 1 \) independent of \(x \), so the runtime is \(O(n) \).
What is the runtime of `my.chol()`? Let \(g(A) \) be the number of flops to factorize \(n \times n \) matrix \(A_n \).

It took \(1 + (n - 1) + (n - 1)^2 + (n - 1)^2 \) additions, subtractions, multiplications and divisions (called 'flops') to solve for \(L_{11} \) and calculate the new \(A \). The highest power is \(2n^2 \).

We have to repeat this for \(n \rightarrow n - 1 \rightarrow n - 2 \ldots \rightarrow 1 \). Since
\[
\sum_{i=1}^{n} 2n^2 = \frac{2n(n + 2)(2n + 1)}{6},
\]
so this implementation has approximately \(g(A_n) \approx \frac{2n^3}{3} \) flops or \(O(n^3) \).

If we had exploited symmetry we could get this down to about \(\frac{n^3}{3} \) but we can't change the order (still \(O(n^3) \)).
Cholesky

\[
\text{my.chol <- function(A) } \{
\text{n <- dim(A)[1] } \# \text{assume nxn}
\text{if (n == 1) return(sqrt(A))}
\]

\[
L <- \text{matrix(0, n, n)}
\]
\[
L[1,1] <- \sqrt{A[1,1]} \quad \# \text{count as 1 op}
\]
\[
\]
\[
L[1,2:n] <- \text{rep}(0, n-1)
\]

\[
A22 <- A[2:n,2:n, drop=FALSE]
\]
\[
\text{newA <- A22 - L[2:n,1] %*% t(L[2:n,1])} \quad \# 2(n-1)^2 \text{ here}
\]
\[
L[2:n,2:n] <- \text{my.chol(newA)} \quad \# \text{but } n(n-1) \text{ possible}
\]

\[
\text{return(L)}
\}
Example: runtime and sorting algorithm Here are a couple of R algorithms to sort a list \(x = (x_1, x_2, \ldots, x_n) \) of \(n \) numbers.

Simple sort: find the smallest element \(x^{(1)} \). Suppose it is the \(k \)th element. Remove the \(k \)th element from the list, so \(y = (x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n) \). Return the vector \((x^{(1)}, f(y))\).

This takes \((n - 1) + (n - 2) + \ldots + 1 = O(n^2)\) comparisons independent of the order of the numbers in \(x \).

Bubble sort: sweep through the vector, swapping \(x_i \) and \(x_{i+1} \) if \(x_i > x_{i+1} \). Repeat this till the vector is in order. After \(i \) sweeps the last \(i \) elements \(x_{(n-i)}, \ldots, x_{(n)} \) must be in their correct places so the algorithm terminates after \(n \) sweeps at most with each sweep using \(n - 1 \) comparisons.

This takes \(O(n^2) \) comparisons at worst, and \(O(n) \) at best.
Merge sort let Merge sort be a function $f(x)$ that takes as input an array x of n numbers and returns a sorted array x'.

[0] If x has one entry it is sorted so return $x' = x$. Otherwise...

[1] Split x into two halves $y = (x_1, \ldots, x_{\lfloor n/2 \rfloor})$ and $z = (x_{\lfloor n/2 \rfloor + 1}, \ldots, n)$.

[2] Sort y and z using Merge sort so $y' = f(y)$ and $z' = f(z)$.

[3] Let $x' = g(y', z')$ where $g()$ is a function that takes as input two sorted vectors and merges their elements to return the sorted union of y' and z' (two sorted vectors of $n/2$ elements can be merged in $n - 1$ operations at worst).

The runtime of Merge sort is $O(n \log(n))$ for n-component x so it is preferred over Bubble sort. We wouldn't use an $O(n^2)$ algorithm when an $O(n \log(n))$ algorithm is available.
Proof (non-examinable): Suppose \(n = 2^k \) for simplicity. Let \(g_k \) be the number of comparisons to sort this vector. Merge sort splits the vector into two vectors of length \(n/2 = 2^{k-1} \). These two sub-vectors have to be sorted, which is \(2g_{k-1} \) comparisons. The number of comparisons to merge the sorted sub-vectors is \(2 \times (n/2) - 1 = 2^k - 1 \) so

\[
g_k = 2g_{k-1} + 2^k - 1
\]

and \(g_1 = 1 \). The homogeneous solutions are \(g_k = A2^k \) with particular solution \(k2^k + 1 \). Applying the initial condition gives \(g_k = (k - 1)2^k + 1 \) or \(g(x) = n \log_2(n) - n + 1 \). We conclude that Merge sort needs \(O(n \log_2(n)) \) comparisons, irrespective of the input.