
Practical 4 – Recursion and Runtime

Q1. Here is an R implementation of Bubble sort.

bubblesort<-function(x) {

 if ((n<-length(x))<2) return(x)
 sorted<-FALSE
 while (!sorted) { #continue if last pass had a swap

 sorted<-TRUE
 for (i in 2:n) { #pass through all adjacent pairs
 if (x[i]<x[i-1]) { #is the pair out of order

 x[i:(i-1)]<-x[(i-1):i] #swap them
 sorted<-FALSE #this pass had a swap
 }

 }
 }
 return(x)

}

J.

Modify the bubblesort function so that the number of pairs of elements that are compared and

the number of pairs that are swapped are returned in a list with the sorted vector. Call this new

function bubblesort1.

bubblesort1<-function(x) {
 if ((n<-length(x))<2) return(x)
 sorted<-FALSE

 tests<-swaps<-0
 while (!sorted) { #continue if last pass had a swap

 sorted<-TRUE

 for (i in 2:n) { #pass through all adjacent pairs
 tests<-tests+1
 if (x[i]<x[i-1]) { #is the pair out of order

 swaps<-swaps+1
 x[i:(i-1)]<-x[(i-1):i] #swap them
 sorted<-FALSE #this pass had a swap

 }
 }
 }

 return(list(x,tests,swaps))
}

For each of the following 4 vectors use bubblesort1 to find the number of pairs of

elements that are compared and the number of pairs that are swapped

(a) v1 = c(16, 12, 4, 6, 11, 19, 5, 2, 15, 1, 3, 18, 14, 8, 20, 10, 7, 13, 9, 17)

(b) v2 = 1:2000

(c) v3 = 2000:1

(d) v4 = sample(v2, 2000) [note : this samples 2000 integers without replacement from the

vector v2 so you will get a different vector each time you run it.]

> v1 = c(16, 12, 4, 6, 11, 19, 5, 2, 15, 1, 3, 18, 14, 8,
20, 10, 7, 13, 9, 17)

> bubblesort1(v1)[2:3]

$tests
[1] 209

$swaps
[1] 87

> v2 = 1:2000
> bubblesort1(v2)[2:3]

$tests
[1] 1999

$swaps
[1] 0

> v3 = 2000:1
> bubblesort1(v3)[2:3]
$tests

[1] 3998000

$swaps

[1] 1999000

> v4 = sample(v2, 2000)

> bubblesort1(v4)[2:3]
$tests
[1] 3830084

$swaps
[1] 1002153

How many pairs of elements are compared in the worst case, as a function of the input length n?

(Ans n*(n-1) or in other words O(n^2))

Q2. Suppose A,B are n x n matrices and x is an n x 1 vector, and we need the matrix product

ABx. How many multiplications are n A(Bx)? (Answer, 2n^2). How many in (AB)x? (Answer,

n^2+n^3). Which of these does R use to evaluate A%*%B%*%x? (Answer, the slow one (AB)x).

Q3. Pascal's triangle is a geometric arrangement of the binomial coefficients in a triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

 ….

Entries in each row are determined by summing adjacent numbers in the previous row. The start

and end of each row is always 1. Write an R function to calculate the nth row of Pascal’s triangle

using the idea of recursion.

pascal = function(n) {

 if (n==1) return(1)

 y = pascal(n-1) #if this is the n-1st row

 return(c(0,y)+c(y,0)) #then this is the nth row

}

http://en.wikipedia.org/wiki/Binomial_coefficient
http://en.wikipedia.org/wiki/Triangle

Q4. Here is an algorithm converting a non-negative integer x to binary.

[0] If x is one or zero then return x. Otherwise, proceed as follows.

[1] Take the remainder B0 when x0 = x is divided by 2. This is the first digit (coefficient

of 2^0). (Hint – what do %% and %/% do?)

[2] Now set x1 = (x0 − B0)/2. Repeat this collecting B1,B2 etc.

[3] the algorithm stops when we have divided x down to xn = 1. Set Bn = 1 and return

the binary number with digits BnBn−1...B1B0

Write a recursive R function implementing this algorithm. Your function should take as input a

non-negative integer x and return the corresponding binary number. Represent the binary

number as a vector, so for example 10 is c(1,0,1,0).

dec2bin<-function(x) {

#convert decimal integer x>=0 to binary

if (round(x)!=x || x<0) stop(’x should be an integer >=0’)

if (x<2) return(x)

return(c(dec2bin(x%/%2),x%%2))

}

Q5 Implement the following sorting algorithm.

Insertion sort: sort (x_1,...,x_{n-1}) then take x_n and insert it in correct position in the

sorted vector. Sort (x_1,...,x_{n-1}) using Insertion sort!

g<-function(x) {

 #insertion sort
 if (length(x)<2) return(x)
 p<-x[1]; x<-g(x[-1])

 if (p<=x[1]) return(c(p,x))
 if (p>=x[n<-length(x)]) return(c(x,p))
 i<-1; while (x[i]<p) i<-i+1

 return(c(x[1:(i-1)],p,x[i:n]))
}

Show that the worst case number of comparisons in insertion sort is O(n^2).

Worst case for insertion-sort is a monotone decreasing list x=(n,n-1,...,1). Each time it takes the

first entry off and compares it to all the others for (n-1)+(n-2)+...+1 comparisons (actually twice

that as I have coded it). That is O(n^2).

Q6

(i) Write an R function which simulates birthdays for n people. Assume 365 days in a year,

represent dates as integers from 1 to 365, and assume birth-dates are uniformly distributed over

the year.

Your function should take as input the number n of people

and return a vector of length n giving the n dates.

birthdays<-function(n=23) {
 #return n simulated birthdays as a vector

 ceiling(365*runif(n))
}

(ii) Write an R function which tests to see if any date is repeated r times or more in a vector of n

birthdays. How does the runtime of your function depend on n?

is.repeated<-function(b,r=2) {
 #return true if an element of b is repeated
 #r times or more

 u<-rep(0,365)
 #add one to each day as a birthday falls on that day
 for (k in 1:length(b)) u[b[k]]<-u[b[k]]+1

 #do any day-tallies exceed r-1
 return((any(u>(r-1))))
}

This takes n additions and 365 tests – we go through the n dates
exactly once. The test for repeated dates goes through the 365

days of the year. So the above has runtime O(n).

(iii) Write an R function which estimates the probability that two or more people share a birthday

in a group of n people, using m simulated sets of n birthdays. Your function should take as input

the two integers n and m and return an estimate for the probability that two or more people share

a birthday.

estimate<-function(n,m,r=2) {

 #probability a birthday is repeated r times or more
 #in a group of n individuals based on m simulated groups

 x<-rep(0,m)
 for (t in 1:m) {
 b<-birthdays(n)

 x[t]<-is.repeated(b,r)
 }
 mean(x)

}

