Practical 4 - Recursion and Runtime

Q1. Here is an R implementation of Bubble sort.

```
bubblesort<-function(x) {
    if ( (n<-length(x))<2) return(x)
    sorted<-FALSE
    while (!sorted) { #continue if last pass had a swap
        sorted<-TRUE
        for (i in 2:n) { #pass through all adjacent pairs
                if (x[i]<x[i-1]) { #is the pair out of order
                                    x[i:(i-1)]<-x[(i-1):i] #swap them
                                    sorted<-FALSE #this pass had a swap
                }
            }
    }
    return(x)
}
```

Modify the bubblesort function so that the number of pairs of elements that are compared and the number of pairs that are swapped are returned in a list with the sorted vector. Call this new function bubblesort1.

```
bubblesort1<-function(x) {
    if ( (n<-length(x))<2) return(x)
    sorted<-FALSE
    tests<-swaps<-0
    while (!sorted) { #continue if last pass had a swap
        sorted<-TRUE
        for (i in 2:n) { #pass through all adjacent pairs
            tests<-tests+1
            if (x[i]<x[i-1]) { #is the pair out of order
                swaps<-swaps+1
                        x[i:(i-1)]<-x[(i-1):i] #swap them
                        sorted<-FALSE #this pass had a swap
            }
        }
    }
    return(list(x,tests,swaps))
}
```

For each of the following 4 vectors use bubblesort1 to find the number of pairs of elements that are compared and the number of pairs that are swapped
(a) $v 1=c(16,12,4,6,11,19,5,2,15,1,3,18,14,8,20,10,7,13,9,17)$
(b) $\mathrm{v} 2=1: 2000$
(c) $\mathrm{v} 3=2000: 1$
(d) $\mathrm{v} 4=\operatorname{sample}(\mathrm{v} 2,2000)$ [note : this samples 2000 integers without replacement from the vector v2 so you will get a different vector each time you run it.]

```
> v1 = c(16, 12, 4, 6, 11, 19, 5, 2, 15, 1, 3, 18, 14, 8,
20, 10, 7, 13, 9, 17)
> bubblesort1(v1)[2:3]
```

```
$tests
[1] 209
$swaps
[1] }8
> v2 = 1:2000
> bubblesort1(v2) [2:3]
$tests
[1] }199
$swaps
[1] 0
> v3 = 2000:1
> bubblesort1(v3)[2:3]
$tests
[1] 3998000
$swaps
[1] 1999000
> v4 = sample(v2, 2000)
> bubblesort1(v4) [2:3]
$tests
[1] 3830084
$swaps
[1] 1002153
```

How many pairs of elements are compared in the worst case, as a function of the input length n ? (Ans $n^{\star}(n-1)$ or in other words $O\left(n^{\wedge} 2\right)$)

Q2. Suppose A, B are n x n matrices and x is an n x 1 vector, and we need the matrix product ABx . How many multiplications are $\mathrm{n} A(\mathrm{Bx})$? (Answer, $2 \mathrm{n}^{\wedge} 2$). How many in (AB)x? (Answer, $n^{\wedge} 2+n^{\wedge} 3$). Which of these does R use to evaluate $A \% * \% B \% * \% x$? (Answer, the slow one (AB)x).

Q3. Pascal's triangle is a geometric arrangement of the binomial coefficients in a triangle.

```
                        1
                        11
            121
            1331
            14641
15101051
```

Entries in each row are determined by summing adjacent numbers in the previous row. The start and end of each row is always 1 . Write an R function to calculate the nth row of Pascal's triangle using the idea of recursion.

```
pascal = function(n) {
    if (n==1) return(1)
    y pascal(n-1) #if this is the n-1st row
    return(c(0,y)+c(y,0)) #then this is the nth row
}
```

Q4. Here is an algorithm converting a non-negative integer x to binary.
[0] If x is one or zero then return x. Otherwise, proceed as follows.
[1] Take the remainder BO when $\mathrm{x} 0=\mathrm{x}$ is divided by 2 . This is the first digit (coefficient of $2^{\wedge} 0$). (Hint - what do $\% \%$ and $\% / \%$ do?)
[2] Now set $\mathrm{x} 1=(\mathrm{x} 0-\mathrm{B} 0) / 2$. Repeat this collecting B1,B2 etc.
[3] the algorithm stops when we have divided x down to $\mathrm{xn}=1$. Set $\mathrm{Bn}=1$ and return the binary number with digits $\mathrm{BnBn}-1$... $\mathrm{B} 1 \mathrm{B0}$

Write a recursive R function implementing this algorithm. Your function should take as input a non-negative integer x and return the corresponding binary number. Represent the binary number as a vector, so for example 10 is $c(1,0,1,0)$.

```
dec2bin<-function(x) {
#convert decimal integer x>=0 to binary
if (round(x)!=x || x<0) stop('x should be an integer >=0')
if (x<2) return(x)
return(c(dec2bin(x%/%2),x%%2))
}
```

Q5 Implement the following sorting algorithm.
Insertion sort: sort ($x _1, \ldots, x_{-}\{n-1\}$) then take $x_{-} n$ and insert it in correct position in the sorted vector. Sort ($x_{-} 1, \ldots, x_{-}\{n-1\}$) using Insertion sort!

```
g<-function(x) {
    #insertion sort
    if (length(x)<2) return(x)
    p<-x[1]; x<-g(x[-1])
    if (p<=x[1]) return(c(p,x))
    if (p>=x[n<-length(x)]) return(c (x,p))
    i<-1; while (x[i]<p) i<-i+1
    return(c(x[1:(i-1)],p,x[i:n]))
}
```

Show that the worst case number of comparisons in insertion sort is $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$.
Worst case for insertion-sort is a monotone decreasing list $\mathrm{x}=(\mathrm{n}, \mathrm{n}-1, \ldots, 1)$. Each time it takes the first entry off and compares it to all the others for $(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots+1$ comparisons (actually twice that as I have coded it). That is $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$.

Q6

(i) Write an R function which simulates birthdays for n people. Assume 365 days in a year, represent dates as integers from 1 to 365, and assume birth-dates are uniformly distributed over the year.

Your function should take as input the number n of people
and return a vector of length n giving the n dates.

```
birthdays<-function(n=23) {
    #return n simulated birthdays as a vector
    ceiling(365*runif(n))
}
```

(ii) Write an R function which tests to see if any date is repeated r times or more in a vector of n birthdays. How does the runtime of your function depend on n ?

```
is.repeated<-function(b,r=2) {
    #return true if an element of b is repeated
    #r times or more
    u<-rep (0,365)
    #add one to each day as a birthday falls on that day
    for (k in 1:length(b)) u[b[k]]<-u[b[k]]+1
    #do any day-tallies exceed r-1
    return((any(u> (r-1))))
}
This takes n additions and 365 tests - we go through the n dates
exactly once. The test for repeated dates goes through the 365
days of the year. So the above has runtime O(n).
```

(iii) Write an R function which estimates the probability that two or more people share a birthday in a group of n people, using m simulated sets of n birthdays. Your function should take as input the two integers n and m and return an estimate for the probability that two or more people share a birthday.

```
estimate<-function(n,m,r=2) {
    #probability a birthday is repeated r times or more
    #in a group of n individuals based on m simulated groups
    x<-rep (0,m)
    for (t in 1:m) {
        b<-birthdays(n)
        x[t]<-is.repeated (b,r)
    }
    mean(x)
}
```

