
Practical 4 – Recursion and Runtime 

 

Q1. Here is an R implementation of Bubble sort.  

 
bubblesort<-function(x) { 
 if ( (n<-length(x))<2) return(x) 
 sorted<-FALSE  
 while (!sorted) { #continue if last pass had a swap 
  sorted<-TRUE 
  for (i in 2:n) { #pass through all adjacent pairs 
   if (x[i]<x[i-1]) { #is the pair out of order 
    x[i:(i-1)]<-x[(i-1):i] #swap them 
    sorted<-FALSE #this pass had a swap 
   } 
  } 
 } 
 return(x) 
} 

J. 
 

Modify the bubblesort function so that the number of pairs of elements that are 

compared and the number of pairs that are swapped are  returned in a list with the sorted 

vector. Call this new function bubblesort1. 

 

For each of the following 4 vectors use bubblesort1 to find the number of pairs 

of elements that are compared and the number of pairs that are swapped 

(a) v1 = c(16, 12,  4,  6, 11, 19,  5,  2, 15,  1,  3, 18, 14,  8, 20, 10, 7, 13,  9, 17) 

(b) v2 = 1:2000 

(c) v3 = 2000:1 

(d) v4 = sample(v2, 2000) [note : this samples 2000 integers without replacement 

from the vector v2 so you will get a different vector each time you run it.] 

 

How many pairs of elements are compared in the worst case, as a function of the input 

length n? 

 

Q2. Suppose A,B are n x n matrices and x is an n x 1 vector, and we need the matrix 

product ABx. How many multiplications are n A(Bx)? How many in (AB)x? Which of 

these does R use to evaluate A%*%B%*%x? 

  

Q3. Pascal's triangle is a geometric arrangement of the binomial coefficients in a triangle. 
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1  4  6  4  1 

1  5  10  10  5  1 

http://en.wikipedia.org/wiki/Binomial_coefficient
http://en.wikipedia.org/wiki/Triangle


              …. 

Entries in each row are determined by summing adjacent numbers in the previous row. 

The start and end of each row is always 1. Write an R function to calculate the nth row of 

Pascal’s triangle using the idea of recursion. 
 

Q4. Here is an algorithm converting a non-negative integer x to binary. 

 

[0] If x is one or zero then return x. Otherwise, proceed as follows.  

 

[1] Take the remainder B0 when x0 = x is divided by 2. This is the first digit 

(coefficient of 2^0). (Hint – what do %% and %/% do?) 

 

[2] Now set x1 = (x0 − B0)/2. Repeat this collecting B1,B2 etc.  

 

[3] the algorithm stops when we have divided x down to xn = 1. Set Bn = 1 and 

return the binary number with digits BnBn−1...B1B0 (Hint if b=f(x) is the 

decimal-to-binary conversion function you are writing then b=c(f(x1),B0) ). 
 
Write a recursive R function implementing this algorithm. Your function should take as 

input a non-negative integer x and return the corresponding binary number. Represent 

the binary number as a vector, so for example 10 is c(1,0,1,0). 

  

Q5 Implement the following sorting algorithm. 

 

Insertion sort: sort (x_1,...,x_{n-1}) then take x_n and insert it in correct 

position in the sorted vector. Sort (x_1,...,x_{n-1}) using Insertion sort! 

 

Show that the worst case number of comparisons in insertion sort is O(n^2). 
 

Q6  

 

(i) Write an R function which simulates birthdays for n people. Assume 365 days in a 

year, represent dates as integers from 1 to 365, and assume birth-dates are uniformly 

distributed over the year. Your function should take as input the number n of people and 

return a vector of length n giving the n dates. 
 

(ii) Write an R function which tests to see if any date is repeated r times or more in a 

vector of n birthdays. How does the runtime of your function depend on n? 
 

(iii) Write an R function which estimates the probability that r or more people share a 

birthday in a group of n people, using m simulated sets of n birthdays. Your function 

should take as input the two integers n and m and return an estimate for the probability 

that r or more people share a birthday. 
 


