
Practical 4 – Recursion and Runtime

Q1. Here is an R implementation of Bubble sort.

bubblesort<-function(x) {
 if ((n<-length(x))<2) return(x)
 sorted<-FALSE
 while (!sorted) { #continue if last pass had a swap
 sorted<-TRUE
 for (i in 2:n) { #pass through all adjacent pairs
 if (x[i]<x[i-1]) { #is the pair out of order
 x[i:(i-1)]<-x[(i-1):i] #swap them
 sorted<-FALSE #this pass had a swap
 }
 }
 }
 return(x)
}

J.

Modify the bubblesort function so that the number of pairs of elements that are

compared and the number of pairs that are swapped are returned in a list with the sorted

vector. Call this new function bubblesort1.

For each of the following 4 vectors use bubblesort1 to find the number of pairs

of elements that are compared and the number of pairs that are swapped

(a) v1 = c(16, 12, 4, 6, 11, 19, 5, 2, 15, 1, 3, 18, 14, 8, 20, 10, 7, 13, 9, 17)

(b) v2 = 1:2000

(c) v3 = 2000:1

(d) v4 = sample(v2, 2000) [note : this samples 2000 integers without replacement

from the vector v2 so you will get a different vector each time you run it.]

How many pairs of elements are compared in the worst case, as a function of the input

length n?

Q2. Suppose A,B are n x n matrices and x is an n x 1 vector, and we need the matrix

product ABx. How many multiplications are n A(Bx)? How many in (AB)x? Which of

these does R use to evaluate A%*%B%*%x?

Q3. Pascal's triangle is a geometric arrangement of the binomial coefficients in a triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

http://en.wikipedia.org/wiki/Binomial_coefficient
http://en.wikipedia.org/wiki/Triangle

 ….

Entries in each row are determined by summing adjacent numbers in the previous row.

The start and end of each row is always 1. Write an R function to calculate the nth row of

Pascal’s triangle using the idea of recursion.

Q4. Here is an algorithm converting a non-negative integer x to binary.

[0] If x is one or zero then return x. Otherwise, proceed as follows.

[1] Take the remainder B0 when x0 = x is divided by 2. This is the first digit

(coefficient of 2^0). (Hint – what do %% and %/% do?)

[2] Now set x1 = (x0 − B0)/2. Repeat this collecting B1,B2 etc.

[3] the algorithm stops when we have divided x down to xn = 1. Set Bn = 1 and

return the binary number with digits BnBn−1...B1B0 (Hint if b=f(x) is the

decimal-to-binary conversion function you are writing then b=c(f(x1),B0)).

Write a recursive R function implementing this algorithm. Your function should take as

input a non-negative integer x and return the corresponding binary number. Represent

the binary number as a vector, so for example 10 is c(1,0,1,0).

Q5 Implement the following sorting algorithm.

Insertion sort: sort (x_1,...,x_{n-1}) then take x_n and insert it in correct

position in the sorted vector. Sort (x_1,...,x_{n-1}) using Insertion sort!

Show that the worst case number of comparisons in insertion sort is O(n^2).

Q6

(i) Write an R function which simulates birthdays for n people. Assume 365 days in a

year, represent dates as integers from 1 to 365, and assume birth-dates are uniformly

distributed over the year. Your function should take as input the number n of people and

return a vector of length n giving the n dates.

(ii) Write an R function which tests to see if any date is repeated r times or more in a

vector of n birthdays. How does the runtime of your function depend on n?

(iii) Write an R function which estimates the probability that r or more people share a

birthday in a group of n people, using m simulated sets of n birthdays. Your function

should take as input the two integers n and m and return an estimate for the probability

that r or more people share a birthday.

