Practical 4 - Recursion and Runtime

Q1. Here is an R implementation of Bubble sort.

```
bubblesort<-function(x) {
    if ( (n<-length(x))<2) return(x)
    sorted<-FALSE
    while (!sorted) { #continue if last pass had a swap
        sorted<-TRUE
        for (i in 2:n) { #pass through all adjacent pairs
        if (x[i]<x[i-1]) { #is the pair out of order
                                    x[i:(i-1)]<-x[(i-1):i] #swap them
                                    sorted<-FALSE #this pass had a swap
        }
        }
    }
    return(x)
}
```

Modify the bubblesort function so that the number of pairs of elements that are compared and the number of pairs that are swapped are returned in a list with the sorted vector. Call this new function bubblesort1.

For each of the following 4 vectors use bubblesort1 to find the number of pairs of elements that are compared and the number of pairs that are swapped
(a) $\mathrm{v} 1=\mathrm{c}(16,12,4,6,11,19,5,2,15,1,3,18,14,8,20,10,7,13,9,17)$
(b) $\mathrm{v} 2=1: 2000$
(c) $\mathrm{v} 3=2000: 1$
(d) $\mathrm{v} 4=\operatorname{sample}(\mathrm{v} 2,2000)$ [note : this samples 2000 integers without replacement from the vector v2 so you will get a different vector each time you run it.]

How many pairs of elements are compared in the worst case, as a function of the input length n ?

Q2. Suppose A, B are $n \mathrm{x} n$ matrices and x is an $\mathrm{n} x 1$ vector, and we need the matrix product $A B x$. How many multiplications are $n A(B x)$? How many in (AB)x? Which of these does R use to evaluate $A \% * \% B \% * \% x$?

Q3. Pascal's triangle is a geometric arrangement of the binomial coefficients in a triangle.

> | 1 | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| 1121 | |
| 1331 | |
| 144641 | |
| 1 | |

Entries in each row are determined by summing adjacent numbers in the previous row. The start and end of each row is always 1 . Write an R function to calculate the nth row of Pascal's triangle using the idea of recursion.

Q4. Here is an algorithm converting a non-negative integer x to binary.
[0] If x is one or zero then return x. Otherwise, proceed as follows.
[1] Take the remainder BO when $\mathrm{x} 0=\mathrm{x}$ is divided by 2 . This is the first digit (coefficient of $2^{\wedge} 0$). (Hint - what do $\% \%$ and $\% / \%$ do?)
[2] Now set $x 1=(x 0-B 0) / 2$. Repeat this collecting B1,B2 etc.
[3] the algorithm stops when we have divided x down to $\mathrm{xn}=1$. Set $\mathrm{Bn}=1$ and return the binary number with digits $\mathrm{BnBn}-1 \ldots \mathrm{~B} 1 \mathrm{B0}$ (Hint if $\mathrm{b}=\mathrm{f}(\mathrm{x})$ is the decimal-to-binary conversion function you are writing then $b=c(f(x 1), B 0))$.

Write a recursive R function implementing this algorithm. Your function should take as input a non-negative integer x and return the corresponding binary number. Represent the binary number as a vector, so for example 10 is $c(1,0,1,0)$.

Q5 Implement the following sorting algorithm.
Insertion sort: sort $\left(x_{_} 1, \ldots, x_{-}\{n-1\}\right)$ then take $x_{n} n$ and insert it in correct position in the sorted vector. Sort $\left(x_{-} 1, \ldots, x_{-}\{n-1\}\right)$ using Insertion sort!

Show that the worst case number of comparisons in insertion sort is $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$.

Q6

(i) Write an R function which simulates birthdays for n people. Assume 365 days in a year, represent dates as integers from 1 to 365, and assume birth-dates are uniformly distributed over the year. Your function should take as input the number n of people and return a vector of length n giving the n dates.
(ii) Write an R function which tests to see if any date is repeated r times or more in a vector of n birthdays. How does the runtime of your function depend on n ?
(iii) Write an R function which estimates the probability that r or more people share a birthday in a group of n people, using m simulated sets of n birthdays. Your function should take as input the two integers n and m and return an estimate for the probability that r or more people share a birthday.

