
Practical 2 – Simulation and Statistical Programming 
 

Q1. Write a function that uses a for loop to sum a geometric series with n terms, first 

term a and common ratio r. The function should take three arguments : a, r and n and 

should return the sum. Check that it works using the formula for the sum of a geometric 

series. 
 

geomsum = function(a, r, n) { 
 x = 0 
 for(i in 1:n) x = x + a * r^(i-1) 
 return(x) 
} 

Q2. Sieve of Eratosthenes. Here is a plan I wrote for an R function to find all primes 

between 2 and n inclusive: 

a) Create a vector s of numbers from 2 to n.  

b) The first entry 2 is a prime. Find all multiples of 2 and remove them from the 

vector s. 

c) The vector is shorter now because we removed 2 and all its multiples. It has a new 

first entry (ie 3). This first entry hasn't been eliminated so it cant be divisible by 

any smaller number. It must be a prime. 

d) Repeat this until the vector s is empty, saving the primes as we go. 

 

The following code implements this. 
Eratosthenes = function(n) { 
 # return all prime numbers up to n 
 if(n < 2) stop("Input value must be >= 2") 
 s = 2:n 
 primes=c() #start with no primes 

 while (length(s)>0) { 
  p=s[1] 
  primes=c(primes,p) 
  i=which(s%%p==0) 
  s=s[-i]  
 } 
 return(primes) 
} 

Q3. (optional) Write an R function that returns the real roots of the quadratic ax
2
 + bx + 

c. The function should take a, b and c as arguments and return appropriate messages if 

the values entered don’t specify a quadratic or if there are no real roots. Use the function 

to determine the roots of  2x
2
  - x – 3. 

 
f = function(a,b,c) { 
 
  if(!identical(a, 0)) { 
    x = b^2 - 4*a*c 
    if(identical(x, 0)) return(-b/(2*a))  
    if(x < 0) return("No real roots") 
    if(x > 0) return(c((-b + c(-sqrt(x),sqrt(x))) / (2*a))) 
  } else { 
    stop("a = 0 so not a quadratic") 
  } 

} 
 
> f(2,-1,-3) 



[1] -1.0  1.5 

 

Q4. Last week we saw we could sample a discrete distribution p=(p_1,p_2,…p_m) by 

simulating u~U[0,1] (u=runif(1)) and looking for the smallest x in {1,2,…,m} such 

that  

    

   u <  p_1 + p_2 + … +p_x 

For example 

 
> p<-c(0.1,0.2,0.3,0.4) 
> cp<-cumsum(p) 
> min(which(runif(1)<cp)) 

 

Make sure you understand how the above code works. Write a function which takes as 

input a pmf p=c(p[1],p[2],...,p[m]) and a number n and returns n samples 

X[1],X[2],...,X[n] distributed according to p. Comment on how to test your 

function. 

 
rdiscrete<-function(p,n=1) { 
 #sample X~p, p a pmf satisfying p[i]>=0, sum(p)=1 
 X<-numeric(n) 
 cp<-cumsum(p) 
 for (i in 1:n) {X[i]<-min(which(runif(1)<cp))} 
 return(X) 
} 
 
> X<-rdiscrete(c(0.1,0.2,0.3,0.4),10000) 
> mean(X==1) 
[1] 0.1014 
> mean(X==4) 

[1] 0.4069 
 

Q5.  Write an R function to simulate X~N(0,1) using rejection with proposal Y~exp(-|x|).  

i. Write a function to simulate n iid values of Y. Make the default n-value n=1. 

 

Here are a couple of possible solutions. You could also use a for-loop, though 

that is less efficient and harder to read. 
 

rdbexp<-function(n=1) { 
X<-log(runif(n)) 
Y<- sample(c(-1,1),n,replace=T)  
return(X*Y) 

} 
 

Alternative to “sample()” would be “Y<-2*round(runif(n))-1”. 
  
 

ii. Write a function implementing rejection for X. Recall the algorithm from Q4 

PS1: 

[1] simulate Y~exp(-|x|) and U~U(0,1) 

[2] if U<exp(-y^2/2+|y|-1/2) accept X=y and stop. Otherwise repeat [1]. 

Hint: you can do this using a while statement. You should call the function you 

wrote in Q2.i to simulate Y. 

 

Your function should have no inputs, and return the simulated value of X. 



 
my_rnorm<-function() { 

finished<-FALSE;  
while (!finished) { 

y<-rdbexp();  
finished<-(runif(1)<exp(-y^2/2+abs(y)-0.5)) 

} 
return(y) 

} 

  

iii. Test your rejection sampler by simulating 1000 samples and checking they are 

normal using the qqnorm() function. 

 
> k<-1000; X<-numeric(k);  
> for (i in 1:k) X[i]<-my_rnorm();  
> qqnorm(X); qqline(X)   

 

Q6. The equation 0 = x
7
 + 10000x

6
 + 1.06x

5
 + 10600x

4
 + 0.0605x

3
 + 605x

2
 + 0.0005x + 5 

has exactly one real root.  

(a) Plot the function to try to get a sense of where the root might be? 

 
f = function(x) x^7 + 10000*x^6 + 1.06*x^5 + 10600*x^4 + 
0.0605*x^3 + 605*x^2 + 0.0005*x + 5 
f.prime = function(x) 7*x^6 + 60000*x^5 + 5*1.06*x^4 + 
4*10600*x^3 + 3*0.0605*x^2 + 2*605*x + 0.0005 
curve(f(x), from = -20000, to = 20000) 

 

(b) Write an R function that applies Newton’s method to find the root. The function 

should have 2 arguments : the initial value x0 and the tolerance value. The 

function should return the estimated solution, the function value at the estimate 

and the number of iterations.  

 
nr1 = function(x, tol = 0.001) { 
  k = 0 
  while(abs(f(x)) > tol) { 
    x = x - (f(x) / f.prime(x)) 
    k= k + 1 
  } 
  return(c(x, f(x), k)) 
} 
 

(c) What happens when you set x0 = 0?  

 
> nr1(0) 
[1] -10000      0      1 

 

(d) What happens when you set x0 = 1? 

 
> nr1(1) 
[1] -10000      0 368922 

 

 

 


