
Practical 2 – Simulation and Statistical Programming

Q1. Write a function that uses a for loop to sum a geometric series with n terms, first

term a and common ratio r. The function should take three arguments : a, r and n and

should return the sum. Check that it works using the formula for the sum of a geometric

series.

geomsum = function(a, r, n) {
 x = 0
 for(i in 1:n) x = x + a * r^(i-1)
 return(x)
}

Q2. Sieve of Eratosthenes. Here is a plan I wrote for an R function to find all primes

between 2 and n inclusive:

a) Create a vector s of numbers from 2 to n.

b) The first entry 2 is a prime. Find all multiples of 2 and remove them from the

vector s.

c) The vector is shorter now because we removed 2 and all its multiples. It has a new

first entry (ie 3). This first entry hasn't been eliminated so it cant be divisible by

any smaller number. It must be a prime.

d) Repeat this until the vector s is empty, saving the primes as we go.

The following code implements this.
Eratosthenes = function(n) {
 # return all prime numbers up to n
 if(n < 2) stop("Input value must be >= 2")
 s = 2:n
 primes=c() #start with no primes

 while (length(s)>0) {
 p=s[1]
 primes=c(primes,p)
 i=which(s%%p==0)
 s=s[-i]
 }
 return(primes)
}

Q3. (optional) Write an R function that returns the real roots of the quadratic ax
2
 + bx +

c. The function should take a, b and c as arguments and return appropriate messages if

the values entered don’t specify a quadratic or if there are no real roots. Use the function

to determine the roots of 2x
2
 - x – 3.

f = function(a,b,c) {

 if(!identical(a, 0)) {
 x = b^2 - 4*a*c
 if(identical(x, 0)) return(-b/(2*a))
 if(x < 0) return("No real roots")
 if(x > 0) return(c((-b + c(-sqrt(x),sqrt(x))) / (2*a)))
 } else {
 stop("a = 0 so not a quadratic")
 }

}

> f(2,-1,-3)

[1] -1.0 1.5

Q4. Last week we saw we could sample a discrete distribution p=(p_1,p_2,…p_m) by

simulating u~U[0,1] (u=runif(1)) and looking for the smallest x in {1,2,…,m} such

that

 u < p_1 + p_2 + … +p_x

For example

> p<-c(0.1,0.2,0.3,0.4)
> cp<-cumsum(p)
> min(which(runif(1)<cp))

Make sure you understand how the above code works. Write a function which takes as

input a pmf p=c(p[1],p[2],...,p[m]) and a number n and returns n samples

X[1],X[2],...,X[n] distributed according to p. Comment on how to test your

function.

rdiscrete<-function(p,n=1) {
 #sample X~p, p a pmf satisfying p[i]>=0, sum(p)=1
 X<-numeric(n)
 cp<-cumsum(p)
 for (i in 1:n) {X[i]<-min(which(runif(1)<cp))}
 return(X)
}

> X<-rdiscrete(c(0.1,0.2,0.3,0.4),10000)
> mean(X==1)
[1] 0.1014
> mean(X==4)

[1] 0.4069

Q5. Write an R function to simulate X~N(0,1) using rejection with proposal Y~exp(-|x|).

i. Write a function to simulate n iid values of Y. Make the default n-value n=1.

Here are a couple of possible solutions. You could also use a for-loop, though

that is less efficient and harder to read.

rdbexp<-function(n=1) {
X<-log(runif(n))
Y<- sample(c(-1,1),n,replace=T)
return(X*Y)

}

Alternative to “sample()” would be “Y<-2*round(runif(n))-1”.

ii. Write a function implementing rejection for X. Recall the algorithm from Q4

PS1:

[1] simulate Y~exp(-|x|) and U~U(0,1)

[2] if U<exp(-y^2/2+|y|-1/2) accept X=y and stop. Otherwise repeat [1].

Hint: you can do this using a while statement. You should call the function you

wrote in Q2.i to simulate Y.

Your function should have no inputs, and return the simulated value of X.

my_rnorm<-function() {

finished<-FALSE;
while (!finished) {

y<-rdbexp();
finished<-(runif(1)<exp(-y^2/2+abs(y)-0.5))

}
return(y)

}

iii. Test your rejection sampler by simulating 1000 samples and checking they are

normal using the qqnorm() function.

> k<-1000; X<-numeric(k);
> for (i in 1:k) X[i]<-my_rnorm();
> qqnorm(X); qqline(X)

Q6. The equation 0 = x
7
 + 10000x

6
 + 1.06x

5
 + 10600x

4
 + 0.0605x

3
 + 605x

2
 + 0.0005x + 5

has exactly one real root.

(a) Plot the function to try to get a sense of where the root might be?

f = function(x) x^7 + 10000*x^6 + 1.06*x^5 + 10600*x^4 +
0.0605*x^3 + 605*x^2 + 0.0005*x + 5
f.prime = function(x) 7*x^6 + 60000*x^5 + 5*1.06*x^4 +
4*10600*x^3 + 3*0.0605*x^2 + 2*605*x + 0.0005
curve(f(x), from = -20000, to = 20000)

(b) Write an R function that applies Newton’s method to find the root. The function

should have 2 arguments : the initial value x0 and the tolerance value. The

function should return the estimated solution, the function value at the estimate

and the number of iterations.

nr1 = function(x, tol = 0.001) {
 k = 0
 while(abs(f(x)) > tol) {
 x = x - (f(x) / f.prime(x))
 k= k + 1
 }
 return(c(x, f(x), k))
}

(c) What happens when you set x0 = 0?

> nr1(0)
[1] -10000 0 1

(d) What happens when you set x0 = 1?

> nr1(1)
[1] -10000 0 368922

