Practical 2 - Simulation and Statistical Programming

Q1. Write a function that uses a for loop to sum a geometric series with n terms, first term a and common ratio r. The function should take three arguments : a, r and n and should return the sum. Check that it works using the formula for the sum of a geometric series.

```
geomsum = function(a, r, n) {
    x = 0
    for(i in 1:n) x = x + a * r^(i-1)
    return(x)
}
Q2. Sieve of Eratosthenes. Here is a plan I wrote for an R function to find all primes between 2 and \(n\) inclusive:
```

a) Create a vector s of numbers from 2 to n .
b) The first entry 2 is a prime. Find all multiples of 2 and remove them from the vector s .
c) The vector is shorter now because we removed 2 and all its multiples. It has a new first entry (ie 3). This first entry hasn't been eliminated so it cant be divisible by any smaller number. It must be a prime.
d) Repeat this until the vector s is empty, saving the primes as we go.

The following code implements this.

```
Eratosthenes = function(n) {
    # return all prime numbers up to n
    if(n < 2) stop("Input value must be >= 2")
    s = 2:n
    primes=c() #start with no primes
    while (length(s)>0) {
        p=s [1]
        primes=c(primes,p)
        i=which(s%%p==0)
        s=s [-i]
    }
    return(primes)
}
```

Q3. (optional) Write an R function that returns the real roots of the quadratic $a x^{2}+b x+$ c. The function should take a, b and c as arguments and return appropriate messages if the values entered don't specify a quadratic or if there are no real roots. Use the function to determine the roots of $2 \mathrm{x}^{2}-\mathrm{x}-3$.

```
f = function(a,b,c) {
    if(!identical(a, 0)) {
        x = b^2 - 4*a*c
        if(identical(x, 0)) return(-b/ (2*a))
        if(x < 0) return("No real roots")
        if(x > 0) return(c((-b + c(-sqrt(x),sqrt(x))) / (2*a)))
    } else {
        stop("a = 0 so not a quadratic")
    }
}
> f(2,-1,-3)
```

```
[1] -1.0 1.5
```

Q4. Last week we saw we could sample a discrete distribution $p=\left(p _1, p _2, \ldots p _m\right)$ by simulating $u \sim U[0,1]$ ($u=r u n i f(1)$) and looking for the smallest x in $\{1,2, \ldots, m\}$ such that

$$
\mathrm{u}<\mathrm{p}_{-} 1+\mathrm{p}_{-} 2+\ldots+\mathrm{p}_{-} \mathrm{x}
$$

For example

```
> p<-c(0.1,0.2,0.3,0.4)
> cp<-cumsum(p)
> min(which(runif(1)<cp))
```

Make sure you understand how the above code works. Write a function which takes as input a $p m f=c(p[1], p[2], \ldots, p[m])$ and a number n and returns n samples $\mathrm{X}[1], \mathrm{X}[2], \ldots, \mathrm{X}[\mathrm{n}]$ distributed according to p . Comment on how to test your function.

```
rdiscrete<-function(p,n=1) {
    #sample X~p, p a pmf satisfying p[i]>=0, sum(p)=1
    X<-numeric(n)
    cp<-cumsum(p)
    for (i in 1:n) {X[i]<-min(which(runif(1)<cp))}
    return(X)
}
> X<-rdiscrete(c(0.1,0.2,0.3,0.4),10000)
> mean(X==1)
[1] 0.1014
> mean (X==4)
[1] 0.4069
```

Q5. Write an R function to simulate $\mathrm{X} \sim \mathrm{N}(0,1)$ using rejection with proposal $\mathrm{Y} \sim \exp (-|\mathrm{x}|)$.
i. Write a function to simulate n iid values of Y . Make the default n -value $\mathrm{n}=1$.

Here are a couple of possible solutions. You could also use a for-loop, though that is less efficient and harder to read.

```
rdbexp<-function(n=1) {
            X<-log(runif(n))
            Y<- sample(c(-1,1),n,replace=T)
            return(X*Y)
}
Alternative to "sample()" would be "Y<-2*round(runif(n))-1".
```

ii. Write a function implementing rejection for X . Recall the algorithm from Q 4 PS1:
[1] simulate $\mathrm{Y} \sim \exp (-|x|)$ and $\mathrm{U} \sim \mathrm{U}(0,1)$
[2] if $\mathrm{U}<\exp \left(-\mathrm{y}^{\wedge} 2 / 2+|y|-1 / 2\right)$ accept $\mathrm{X}=\mathrm{y}$ and stop. Otherwise repeat [1].
Hint: you can do this using a while statement. You should call the function you wrote in Q2.i to simulate Y.

Your function should have no inputs, and return the simulated value of X.

```
my_rnorm<-function() {
    finished<-FALSE;
    while (!finished) {
            y<-rdbexp ();
            finished<-(runif(1)<exp(-y^2/2+abs(y) -0.5))
    }
    return(y)
}
```

iii. Test your rejection sampler by simulating 1000 samples and checking they are normal using the qqnorm () function.

```
> k<-1000; X<-numeric(k);
> for (i in 1:k) X[i]<-my_rnorm();
> qqnorm(X); qqline(X)
```

Q6. The equation $0=x^{7}+10000 x^{6}+1.06 x^{5}+10600 x^{4}+0.0605 x^{3}+605 x^{2}+0.0005 x+5$ has exactly one real root.
(a) Plot the function to try to get a sense of where the root might be?

```
f = function(x) x^^7 + 10000*x^6 + 1.06*x^5 + 10600*x^4 +
0.0605* x^3 + 605*x^2 + 0.0005*x + 5
f.prime = function(x) 7*x^6 + 60000*x^5 + 5*1.06*x^4 +
4*10600* x^3 + 3*0.0605* x^2 + 2*605*x + 0.0005
curve(f(x), from = -20000, to = 20000)
```

(b) Write an R function that applies Newton's method to find the root. The function should have 2 arguments : the initial value x 0 and the tolerance value. The function should return the estimated solution, the function value at the estimate and the number of iterations.

```
nr1 = function(x, tol = 0.001) {
    k = 0
    while(abs(f(x)) > tol) {
        x = x - (f(x) / f.prime(x))
        k= k + 1
    }
    return(c(x, f(x), k))
}
```

(c) What happens when you set $\mathrm{x} 0=0$?

```
> nr1(0)
```

[1] -10000 0
(d) What happens when you set $\mathrm{x} 0=1$?

```
> nrl(1)
```

[1] -10000 0368922

