Part A Simulation and Statistical Programming Practical Sheet 1

Arithmetic operations

Q. Create the following variables and check they are correct.

Variable name	Value	Answer
x 1	$5 \times 4+6 \div 4-1.2$	20.3
x 2	$3^{3}-1$	26
x 3	$\mathrm{e}^{3 \times 6-15}-2$	18.08554
x 4	$564 \bmod 17$	3
$\mathrm{x5}$	$\cos (\pi / 6)$	0.8660254
x 6	$\sqrt{81}$	9
x 7	$\log _{10}(67)$	1.826075
x 8	$\log _{\mathrm{e}}(-1)$	NaN
$\mathrm{x9}$	$\mathrm{x} 1+\mathrm{x} 2-\mathrm{x3} \div \mathrm{x} 4$	40.27149

```
x1 = 5 * 4 + 6 / 4 - 1.2
x2 = 3^3 - 1
x3 = exp (3*6-15) -2
x4 = 564 %% 17
x5 = cos(pi/6)
x6 = sqrt(81)
x7= log10(67)
x8= log(-1)
x9 = x1 +x2 - x3 / x4
```


Vectors and sequences

To create a vector containing a sequence of integers from a to b we can use a:b
Q. Create a vector v0 containing the integers from -10 to 10.
$\mathrm{v} 0=-10: 10$
The R function seq can be used to create more complex sequences.
For example,
$\operatorname{seq}($ from $=0$, to $=3$, by $=1)$
creates the vector (0 123)
The same can be achieved using
seq(0, 3, 1)
Here the numbers 0,3 and 1 are assigned to the arguments from, to and by using positional matching.
Q. Use the R function seq to create the following sequences

Name	Sequence
v 1	$1,2,3,4,5,6,7,8,9,10$
v 2	$3,6,9,12,15,18,21,24,27,30$
v 3	$1,4,7,10$
v 4	$1,2.5,4,5.5,7$

```
v1 = seq(1, 10, 1)
v2 = seq(3, 30, 3)
v3}=\operatorname{seq}(1,10,3
v4 = seq}(1,7,1.5
```

Q. Apply the functions $\min (), \max ()$ and length() to these vectors.
$>\min (v 1) ; \max (v 1) ;$ length(v1)
[1] 1
[1] 10
[1] 10
The function rep () can also be used to generate sequences

```
rep(1, 5)
```

creates the vector ($\left.\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right)$
Q. Use rep () and seq() as needed, create the vectors

00001111222233334444
12341234123412341234
12342345345645675678

```
> rep(0:4, rep (4,5))
    [1] 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
> rep(1:4, 5)
```

```
    [1]}1
> rep (0:4, rep (4,5))+rep (1:4, 5)
```


Extracting elements from vectors : to extract the k th element of the vector v1 we use
v1[k]
Q. Calculate the sum of the $5^{\text {th }}$ element of $v 1$ and $7^{\text {th }}$ element of $v 2$

```
> v1[5]+v2[7]
```

```
[1] 26
```

We can use this same method to exclude certain elements from vector.
Q. Look at what the following commands do
v1 [-5]
v1[-c (1:6)]
Q. Using only v1, v2, v3, v4 create new vectors containing the following sequences

Name	Sequence
v5	3122130
v6	481216202428323640
v7	$\cos (\pi \mathrm{i} / 3)$ for $\mathrm{i} \in\{1,2, \ldots, 10\}$
v 8	$e^{i}-3 \mathrm{i}$ for $\mathrm{i} \in\{1,2, \ldots, 10\}$
v 9	$3 \mathrm{i}(\bmod 7)$ for $\mathrm{i} \in\{1,2, \ldots, 10\}$

```
v4 = 3 * v3
v6 = 4 * v1
v7 = cos(v1 * pi / 3)
v8 = exp(v1) - 3*v1
v9 = (3*v1) %% 7
```

Q. Create two new vectors, called v10 and v11, that contain the sorted elements of v 9 in increasing and decreasing order respectively.
Q. Create vectors, called v 12 and v 13 , that contain the following first names and surnames
(Mary, Sam, Beth, George, Helen, Nick, Tracy, David, Jill, Fred)
(Stern, Trill, Matthews, Cray, Beal, Simpson, Deal, Hunter, Wetherby, Sims)

```
v12= c("Mary", "Sam", "Beth", "George", "Helen", "Nick",
"Tracy", "David","Jill", "Fred")
v13 = c("Stern", "Trill", "Matthews", "Cray", "Beal",
"Simpson", "Deal", "Hunter", "Wetherby", "Sims")
```

Q. Use the paste () function to create a vector which contains the full names of the individuals?

```
paste(v12, v13)
```


Logical Operators

Q. Use the logical operators and the which() function to determine

1. which elements of v 9 are greater than 3
2. which elements of v 9 are between than 2 and 4 inclusive
3. which elements of v 9 are greater than 4 or divisible by 2
```
> which(v9 > 3)
[1] 2 4 6 9
> which(v9 >= 2 & v9 <= 4)
[1] 1 3 6 8 10
> which(v9 > \ 4 | l (v9 %% %) == 0)
```


Simulation

Q. We saw in lectures that if $\mathrm{u} \sim \mathrm{U}[0,1]$ and $\mathrm{X}=-(1 / \mathrm{r}) \log (\mathrm{u})$ then $\mathrm{X} \sim \operatorname{Exp}(\mathrm{r})$. Write a one-line simulator for an exponential rv $\mathrm{X} \sim \operatorname{Exp}(0.5)$. Simulate $1000 \operatorname{Exp}(0.5)$ r.v. and check the mean is about 2 (you may find runif () and mean () useful).

```
> u=runif(n=1000); X=-2*log(u);
> X[1:5]
[1] 2.4079761 0.3474278 1.3791364 0.5259934 2.4905842
> mean(X)
[1] 2.043599
```

Q. We saw in lectures thatat if $\mathrm{u} \sim \mathrm{U}[0,1]$ and we set $\mathrm{X}=$ ceiling $(\log (\mathrm{u}) / \log (1-\mathrm{p}))$ then X~Geom(p). Simulate 1000 Geom(1/2) r.v. and check the mean is about 2. Note that ceiling() is an R command.

```
> u=runif(1000); p=1/2
```

```
> X=ceiling(log(u) /log(1-p))
> X[1:5]
[1] 2 1 3 2 3
> mean(X)
[1] 2.004
```

Q. In lectures we saw we could sample a discrete distribution $\mathrm{p}=\left(\mathrm{p} _1, \mathrm{p}_{-} 2, \ldots \mathrm{p} _m\right)$ by simulating $u \sim U[0,1]$ ($u=r u n i f(1)$) and looking for the smallest x in $\{1,2, \ldots, m\}$ such that

$$
\mathrm{u}<\mathrm{p}_{-} 1+\mathrm{p}_{-} 2+\ldots+\mathrm{p}_{-} \mathrm{x}
$$

See if you can use this to simulate $\mathrm{X} \sim \mathrm{p}$ where $\mathrm{p}=(0.1,0.2,0.3,0.4)$. Do it (a) 'by hand' just using R as a calculator and (b) see if you can automate it using the cumsum (), which(), min() commands.

```
> p=c(0.1,0.2,0.3,0.4)
> ps=cumsum(p)
> ps
[1] 0.1 0.3 0.6 1.0
> u=runif(1)
> u
[1] 0.5046117
> #3 is smallest x such that sum(p[1:x])>u
> (u<ps)
[1] FALSE FALSE TRUE TRUE
> which(u<ps)
[1] 3 4
> min(which(u<ps))
[1] 3
> #can repreat this to sample p in one line
> min(which(runif(1)<cumsum(p)))
[1] 2
> min(which(runif(1)<cumsum(p)))
[1] 3
> min(which(runif(1)<cumsum(p)))
[1] 1
> # our X~p are 3,2,3,1
```


Matrices

Matrices can be constructed from vectors using the matrix() function.
Q. Type in the command

```
m1 = matrix(v1, nrow = 2, ncol = 5, byrow = TRUE)
```

Q. What does m 1 look like?
Q. What happens if you increase or decrease the number of rows and columns of the matrix m 1 ?

```
> m1 = matrix(v1, nrow = 2, ncol = 5, byrow = TRUE)
> m1
\begin{tabular}{rrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} \\
{\([1]\),} & 1 & 2 & 3 & 4 & 5 \\
{\([2]\),} & 6 & 7 & 8 & 9 & 10
\end{tabular}
> m1 = matrix(v1, nrow = 3, ncol = 5, byrow = TRUE)
Warning message:
In matrix(v1, nrow = 3, ncol = 5, byrow = TRUE) :
    data length [10] is not a sub-multiple or multiple of the
number of rows [3]
> m1
\begin{tabular}{rrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} \\
{\([1]\),} & 1 & 2 & 3 & 4 & 5 \\
{\([2]\),} & 6 & 7 & 8 & 9 & 10 \\
{\([3]\),} & 1 & 2 & 3 & 4 & 5
\end{tabular}
> m1 = matrix(v1, nrow = 2, ncol = 4, byrow = TRUE)
Warning message:
In matrix(v1, nrow = 2, ncol = 4, byrow = TRUE) :
    data length [10] is not a sub-multiple or multiple of the
number of columns [4]
> m1
\begin{tabular}{rrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
{\([1]\),} & 1 & 2 & 3 & 4 \\
{\([2]\),} & 5 & 6 & 7 & 8
\end{tabular}
```

In the above command we set the argument byrow = TRUE which specifies that the elements of the vector v1 are to be placed into the matrix starting with the first row, then the second row etc. The default value of this argument is FALSE, thus if we simply omit this part of the command we get a matrix which has been filled by column. Type in the command to try this
$\mathrm{m} 2=$ matrix(v1, nrow $=2$, ncol $=5)$
Like vectors, matrices can be manipulated as if they were variables. To square all the elements and add 3 enter the command and check this is what has happened
$m 1^{\wedge} 2+3$
We can also extract elements in a similar way to vectors. For example, to extract the element of m 2 in the $2^{\text {nd }}$ row and $3^{\text {rd }}$ column we can use $m 1[2,3]$

Alternatively, submatrices can be extracted. For example, to extract the 4 th and $5^{\text {th }}$ columns of the matrix we would use
m1[, 4:5]
The transpose of a matrix can be calculated using the t () function.
$m 3=t(m 1)$
Matrices can be multipled together using the $\% * \%$ operator.
Q. What do you get when you type $\mathrm{m} 1 \% * \% \mathrm{~m} 2$
Q. What do you get when you type m1 $\%$ * m3

```
> m1 %*% m2
Error in m1 %*% m2 : non-conformable arguments
> m1 %*% m3
    [,1] [,2]
[1,] 55 130
[2,] 130 330
```

Matrices can also be constructed by combining vectors or other matrices together using the cbind() and rbind() functions.

For example
$\mathrm{m} 4=\operatorname{cbind}(\mathrm{v} 1, \mathrm{v} 2)$
creates a 10×2 matrix with v 1 as the first column and v 2 as the second column.
m5 = rbind(v1, v2)
creates a 2×10 matrix with v 1 as the first row and v 2 as the second row.
Q. Create a 10×10 matrix (m6) of integers from 1 to 100 , filled one row at a time. Create a matrix (m 7) with v 2 as the first column and v 1 as the second column. Multiply m 6 by m 7 . Square all the elements of the matrix and subtract 400. What is the element in the $5^{\text {th }}$ row and $2^{\text {nd }}$ column? (ans. 6681825)

```
m6 = matrix(1:100, 10, 10, byrow = T)
m7 = cbind(v7, v1)
m = m6 %*% m7
```

```
m = m^2 -400
m[5,2]
```


Arrays

The function array () can be used to construct higher dimensional arrays

```
a1 = array(1:1000, dim = c (5,8,25))
```

creates an array with dimensions $5 \times 8 \times 25$ containing the integers from 1 to 1000 .
Q. By examining the elements of the array determine how R places the integers into the array.

```
> a1[1:3, 1:3, 1:3]
```

, , 1

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	6	11
$[2]$,	2	7	12
$[3]$,	3	8	13

, , 2

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	41	46	51
$[2]$,	42	47	52
$[3]$,	43	48	53

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	81	86	91
$[2]$,	82	87	92
$[3]$,	83	88	93

Factors

Factors are variables which can only take one of a finite set of discrete values. The cut () command is very useful in converting numeric vectors into a factor. For example,

```
f1 = cut(v5, c(0, 10, 20, 30, 40, 50))
```

Creates a factor with 5 levels : $(0,10](10,20](20,30](30,40](40,50]$

Lists

Often we would like to store data of several different types and sizes in one object. This can be achieved using a list.

To create a list that include the vectors v1 and v4 and the matrix m1 enter the command and look at the result
$11=$ list($\mathrm{v} 1=\mathrm{v} 1, \mathrm{v} 4=\mathrm{v} 4, \mathrm{~m} 1=\mathrm{m} 1)$
Components of a list can be accessed by name using the \$ symbol. For example, the component v1 can be extracted by entering the command

11\$v1

To access the $2^{\text {nd }}$ component of the list (without reference to its name) enter the command

11 [2]
This returns a new list with one component. An alternative would be to use

11[[2]]

This returns the vector that is the second component of the list I1.

Data Frames

Most datasets are stored in R as data frames and many R functions take data frames as input. Data frames are like matrices but the columns can be of different types from each other. The R function data.frame () is used to create data frames.

For example,

```
d1 = data.frame(firstname = v11, surname = v12, age = f1)
```


Keeping track of objects

Use ls () to see all the R objects you have created so far.

Use the function mode () to look at the type of each of these objects.

