
Part A Simulation and Statistical Programming –

Practical Sheet 1

Arithmetic operations

Q. Create the following variables and check they are correct.

Variable name Value Answer

x1 5 x 4 + 6 4 – 1.2 20.3

x2 33 -1 26

x3 e3x6-15 – 2 18.08554

x4 564 mod 17 3

x5 cos(/6) 0.8660254

x6 81 9

x7 log10(67) 1.826075

x8 loge(-1) NaN

x9 x1 + x2 – x3 x4 40.27149

x1 = 5 * 4 + 6 / 4 – 1.2
x2 = 3^3 – 1
x3 = exp(3*6-15) -2
x4 = 564 %% 17

x5 = cos(pi/6)
x6 = sqrt(81)
x7 = log10(67)
x8 = log(-1)
x9 = x1 +x2 - x3 / x4

Vectors and sequences

To create a vector containing a sequence of integers from a to b we

can use a:b

Q. Create a vector v0 containing the integers from -10 to 10.

v0 = -10:10

The R function seq can be used to create more complex sequences.

For example,

seq(from = 0, to = 3, by = 1)

creates the vector (0 1 2 3)

The same can be achieved using

seq(0, 3, 1)

Here the numbers 0, 3 and 1 are assigned to the arguments from, to

and by using positional matching.

Q. Use the R function seq to create the following sequences

Name Sequence

v1 1,2,3,4,5,6,7,8,9,10

v2 3,6,9,12,15,18,21,24,27,30

v3 1,4,7,10

v4 1, 2.5, 4, 5.5, 7

v1 = seq(1, 10, 1)
v2 = seq(3, 30, 3)
v3 = seq(1, 10, 3)
v4 = seq(1, 7, 1.5)

Q. Apply the functions min(), max() and length() to these vectors.

> min(v1);max(v1);length(v1)

[1] 1
[1] 10
[1] 10

The function rep() can also be used to generate sequences

rep(1, 5)

creates the vector (1 1 1 1 1)

Q. Use rep() and seq() as needed, create the vectors

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8

> rep(0:4, rep(4,5))
 [1] 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

> rep(1:4, 5)

 [1] 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
> rep(0:4, rep(4,5))+rep(1:4, 5)
 [1] 1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8

Extracting elements from vectors : to extract the kth element of

the vector v1 we use

v1[k]

Q. Calculate the sum of the 5th element of v1 and 7th element of v2

> v1[5]+v2[7]
[1] 26

We can use this same method to exclude certain elements from
vector.

Q. Look at what the following commands do

v1[-5]

v1[-c(1:6)]

Q. Using only v1, v2, v3, v4 create new vectors containing the

following sequences

Name Sequence

v5 3 12 21 30

v6 4 8 12 16 20 24 28 32 36 40

v7 cos(i/3) for i {1,2,…,10}

v8 ei – 3i for i {1,2,…,10}

v9 3i (mod 7) for i {1,2,…,10}

v4 = 3 * v3
v6 = 4 * v1
v7 = cos(v1 * pi / 3)
v8 = exp(v1) - 3*v1
v9 = (3*v1) %% 7

Q. Create two new vectors, called v10 and v11, that contain the sorted

elements of v9 in increasing and decreasing order respectively.

Q. Create vectors, called v12 and v13, that contain the following first

names and surnames

(Mary, Sam, Beth, George, Helen, Nick, Tracy, David, Jill, Fred)

(Stern, Trill, Matthews, Cray, Beal, Simpson, Deal, Hunter, Wetherby,
Sims)

v12= c("Mary", "Sam", "Beth", "George", "Helen", "Nick",
"Tracy", "David","Jill", "Fred")

v13 = c("Stern", "Trill", "Matthews", "Cray", "Beal",
"Simpson", "Deal", "Hunter", "Wetherby", "Sims")

Q. Use the paste() function to create a vector which contains the full

names of the individuals?

paste(v12, v13)

Logical Operators

Q. Use the logical operators and the which() function to determine

1. which elements of v9 are greater than 3

2. which elements of v9 are between than 2 and 4 inclusive
3. which elements of v9 are greater than 4 or divisible by 2

> which(v9 > 3)
[1] 2 4 6 9

> which(v9 >= 2 & v9 <= 4)
[1] 1 3 6 8 10
> which(v9 > 4 | (v9 %% 2) == 0)
[1] 2 3 4 6 7 9 10

Simulation

Q. We saw in lectures that if u~U[0,1] and X = - (1/r) log(u) then X~Exp(r). Write a

one-line simulator for an exponential rv X~Exp(0.5). Simulate 1000 Exp(0.5) r.v. and

check the mean is about 2 (you may find runif() and mean() useful).

> u=runif(n=1000); X=-2*log(u);
> X[1:5]
[1] 2.4079761 0.3474278 1.3791364 0.5259934 2.4905842
> mean(X)
[1] 2.043599

Q. We saw in lectures thatat if u~U[0,1] and we set X=ceiling(log(u)/log(1-p)) then

X~Geom(p). Simulate 1000 Geom(1/2) r.v. and check the mean is about 2. Note that

ceiling() is an R command.

> u=runif(1000); p=1/2

> X=ceiling(log(u)/log(1-p))
> X[1:5]
[1] 2 1 3 2 3
> mean(X)
[1] 2.004

Q. In lectures we saw we could sample a discrete distribution p=(p_1,p_2,…p_m) by

simulating u~U[0,1] (u=runif(1)) and looking for the smallest x in {1,2,…,m} such

that

 u < p_1 + p_2 + … +p_x

See if you can use this to simulate X~p where p=(0.1,0.2,0.3,0.4). Do it (a) ‘by hand’ just

using R as a calculator and (b) see if you can automate it using the cumsum(),

which(), min() commands.

> p=c(0.1,0.2,0.3,0.4)
> ps=cumsum(p)
> ps
[1] 0.1 0.3 0.6 1.0
> u=runif(1)
> u
[1] 0.5046117
> #3 is smallest x such that sum(p[1:x])>u
> (u<ps)
[1] FALSE FALSE TRUE TRUE
> which(u<ps)

[1] 3 4
> min(which(u<ps))
[1] 3
> #can repreat this to sample p in one line
> min(which(runif(1)<cumsum(p)))
[1] 2
> min(which(runif(1)<cumsum(p)))
[1] 3
> min(which(runif(1)<cumsum(p)))
[1] 1
> # our X~p are 3,2,3,1

Matrices

Matrices can be constructed from vectors using the matrix() function.

Q. Type in the command

m1 = matrix(v1, nrow = 2, ncol = 5, byrow = TRUE)

Q. What does m1 look like?

Q. What happens if you increase or decrease the number of rows and

columns of the matrix m1?

> m1 = matrix(v1, nrow = 2, ncol = 5, byrow = TRUE)
> m1

 [,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10

> m1 = matrix(v1, nrow = 3, ncol = 5, byrow = TRUE)
Warning message:
In matrix(v1, nrow = 3, ncol = 5, byrow = TRUE) :
 data length [10] is not a sub-multiple or multiple of the
number of rows [3]
> m1
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 1 2 3 4 5

> m1 = matrix(v1, nrow = 2, ncol = 4, byrow = TRUE)
Warning message:
In matrix(v1, nrow = 2, ncol = 4, byrow = TRUE) :
 data length [10] is not a sub-multiple or multiple of the
number of columns [4]
> m1
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4

[2,] 5 6 7 8

In the above command we set the argument byrow = TRUE which
specifies that the elements of the vector v1 are to be placed into the

matrix starting with the first row, then the second row etc. The default
value of this argument is FALSE, thus if we simply omit this part of the

command we get a matrix which has been filled by column. Type in

the command to try this

m2 = matrix(v1, nrow = 2, ncol = 5)

Like vectors, matrices can be manipulated as if they were variables. To

square all the elements and add 3 enter the command and check this
is what has happened

m1^2 + 3

We can also extract elements in a similar way to vectors. For example,

to extract the element of m2 in the 2nd row and 3rd column we can use

m1[2, 3]

Alternatively, submatrices can be extracted. For example, to extract

the 4th and 5th columns of the matrix we would use

m1[, 4:5]

The transpose of a matrix can be calculated using the t() function.

m3 = t(m1)

Matrices can be multipled together using the %*% operator.

Q. What do you get when you type m1 %*% m2

Q. What do you get when you type m1 %*% m3

> m1 %*% m2
Error in m1 %*% m2 : non-conformable arguments
> m1 %*% m3
 [,1] [,2]
[1,] 55 130
[2,] 130 330

Matrices can also be constructed by combining vectors or other
matrices together using the cbind() and rbind() functions.

For example

m4 = cbind(v1, v2)

creates a 10x2 matrix with v1 as the first column and v2 as the second

column.

m5 = rbind(v1, v2)

creates a 2x10 matrix with v1 as the first row and v2 as the second

row.

Q. Create a 10x10 matrix (m6) of integers from 1 to 100, filled one

row at a time. Create a matrix (m7) with v2 as the first column and v1

as the second column. Multiply m6 by m7. Square all the elements of
the matrix and subtract 400. What is the element in the 5th row and

2nd column? (ans. 6681825)

m6 = matrix(1:100, 10, 10, byrow = T)

m7 = cbind(v7, v1)
m = m6 %*% m7

m = m^2 -400
m[5,2]

Arrays

The function array() can be used to construct higher dimensional

arrays

a1 = array(1:1000, dim = c(5,8,25))

creates an array with dimensions 5x8x25 containing the integers from

1 to 1000.

Q. By examining the elements of the array determine how R places the

integers into the array.

> a1[1:3, 1:3, 1:3]
, , 1

 [,1] [,2] [,3]
[1,] 1 6 11
[2,] 2 7 12
[3,] 3 8 13

, , 2

 [,1] [,2] [,3]
[1,] 41 46 51
[2,] 42 47 52
[3,] 43 48 53

, , 3

 [,1] [,2] [,3]
[1,] 81 86 91
[2,] 82 87 92
[3,] 83 88 93

Factors

Factors are variables which can only take one of a finite set of discrete
values. The cut() command is very useful in converting numeric

vectors into a factor. For example,

f1 = cut(v5, c(0, 10, 20, 30, 40, 50))

Creates a factor with 5 levels : (0,10] (10,20] (20,30] (30,40] (40,50]

Lists

Often we would like to store data of several different types and sizes in
one object. This can be achieved using a list.

To create a list that include the vectors v1 and v4 and the matrix m1

enter the command and look at the result

l1 = list(v1 = v1, v4 = v4, m1 = m1)

Components of a list can be accessed by name using the $ symbol. For

example, the component v1 can be extracted by entering the

command

l1$v1

To access the 2nd component of the list (without reference to its name)
enter the command

l1[2]

This returns a new list with one component. An alternative would be to
use

l1[[2]]

This returns the vector that is the second component of the list l1.

Data Frames

Most datasets are stored in R as data frames and many R functions

take data frames as input. Data frames are like matrices but the

columns can be of different types from each other. The R function
data.frame() is used to create data frames.

For example,

d1 = data.frame(firstname = v11, surname = v12, age = f1)

Keeping track of objects

Use ls() to see all the R objects you have created so far.

Use the function mode() to look at the type of each of these objects.

