
Part A Simulation and Statistical Programming Hilary 2015

Problem Sheet 4, due Tuesday 10am Week 8.

Please email solutions in a single well-commented R-script to

andreas.anastasiou@jesus.ox.ac.uk

Q1. Here is an algorithm converting a non-negative number 0<x<1 to binary.

Let b be the binary representation of x. If x is zero or one then set b=x.
Otherwise compute the first j binary places as follows. Let i=1 and y=2x. If y is
greater than or equal one set b[i]=1 and x=y-1, and otherwise set b[i]=0 and
x=y. If x is now zero then stop (as there are no more non zero places) and
otherwise increase i by one and repeat until i=j and b[j] is evaluated.

(a) Write an R function implementing the algorithm you wrote down in (a). Your
function should take as input a non-negative fraction x between 0 and 1 and
return the corresponding binary representation, accurate to 56 binary places.
Represent the binary number as a vector, so for example decimal 0.125 becomes
c(0,0,1) in binary.

(b) At what binary place do R’s numerical values for 0.3 and 0.1+0.1+0.1 differ?

Q2. Quick sort is a method for sorting a vector of numbers. A vector
x=c(x1,x2,...,xn) is given. The function s=qsort(x) returns a vector s of the

same length as x with the entries of x given in numerically increasing order.

The algorithm works as follows. If the input vector x is empty (x=c(), so n=0),

or has length n=1, the function returns s=x. Otherwise, pick a pivot (for example

x[1]). Split the vector into entries smaller than the pivot x[1], say y=(x[i]:

x[i]<x[1], i=2...n) and greater than or equal x[1], say z=(x[i]:

x[i]>=x[1], i=2...n). Call qsort() to sort the (possibly empty) vectors y and

z, and return s=(qsort(y),x[1],qsort(z)).

(a) Plan and write a recursive R function implementing Quick sort.

(b) Show that the runtime of Quick sort (measured in comparions) is
O(n^2) for the worst case input.

Q3. Consider a sequence of observations x1,..., xn. Let mi and si
2 denote the mean

and sample variance of the first i observations nixx i ,,...,1 . How many

operations (additions/subtractions or multiplications/divisions) are needed to
calculate the sequence of means m1,...,mn, if each mean is calculated separately?

(a) Derive an expression for mi+1 in terms of mi and x i+1 and write an R function

that calculates m1,...,mn using this sequential formula. How many operations will

this function use?

(b) Now consider the sequence of sample variancess1
2,...,sn

2. Calculate the

number of operations needed to calculate this sequence by evaluating each
variance separately, and using a sequential method.

Q4. Consider the normal linear model XY where Y is a vector of n

observations, X is an nxp matrix with each column containing a different
explanatory variable and is vector of n independent normal random errors with

mean zero and unknown variance 2 . The maximum likelihood estimator ̂ for

 is YXXX TT 1)(ˆ . The sample variance 2S is)ˆ()ˆ(
1

12 YXYX
n

S T

. The standard error for î is se(î)= ii
T XXS])[(1

.

(a) The trees data give Girth, Height and Volume measurements for 31 trees. Fit

the normal linear model 321 heightgirth xxy using data(trees) and

summary(lm(Volume~Girth+Height,data=trees)) and briefly interpret the

output. (trees is a built-in dataframe – start R and type “trees” at the console)

(b) Write a function of your own (using solve() or your solution to Q6, not lm())

to fit a normal linear model. Your function should take the 31x1 vector
y=trees$Volume and the 31x3 matrix

X=cbind(rep(1,31),trees$Girth,trees$Height) as input and return estimates

of ̂ , the residual standard error S and the standard errors of each of the ̂ ’s.

Check your output against the corresponding results from the summary(lm())

output in (a).

Q5. Here is an algorithm to compute the QR factorisation of nxp matrix A with
p<n into an nxp orthogonal matrix Q and a pxp upper triangular matrix R. |v| is
the Euclidean norm of vector v, the square root of the sum of the squares of the
elements of v.

Step 1: Create nxp matrix Q of NA’s and pxp matrix R of NA’s.
Step 2: Set Q[,1]=A[,1]/|A[,1]| and R[1,1]=|A[,1]|
Step 3: If p=1 then we are done; return Q and R.
Step 4: Otherwise (if p>1)

Step 4.1: set R[1,2:p]= Q[,1]
T

A[,2:p] and R[2:p,1]=0(p-1)x1

Step 4.2: set A’= A[,2:p] – Q[,1]R[1,2:p].

Notice that Q[,1]R[1,2:p] is an outer product of an n component column
vector and a (p-1) component row vector so A’ is a new nx(p-1) matrix.
Either make use the outer() command or, if you use %*%, be careful to use
drop=F in forming these subset matrices.

Step 4.3: compute the QR factorisation of A’ (A’=Q’R’ say).
Step 4.4: set Q[,2:p] = Q’ and R[2:p,2:p]=R’ and return Q and R.

(a) Implement this algorithm as a recursive function in R. Your function should
take as input an nxp matrix A and return two matrices Q and R in a list. State
briefly how you checked your function was correct.

(b) Using your QR function, and the R backsolve() command, give a least squares

solution to the over-determined system X ̂ = y where X and y take their values

from the trees data in question 5.

