
Part A Simulation and Statistical Programming HT15

Lecturer: Geoff Nicholls

University of Oxford

Lecture 8: Modularity; Vectorisation; Handling Data

Notes and Problem sheets are available at

www.stats.ox.ac.uk\ ∼nicholls\PartASSP

Overview

1. Using functions to write code that works

2. For-loops and apply()

3. Reading and writing data.

4. Attaching data frames to the search path.

5. Further operations on data: subsetting.

6. Plotting data

(a) Histograms and overlays.

(b) Boxplots and the R Formula notation.

(c) Point plots

7. Debugging*, Saving a workspace*

More functions

In the last practical I asked you to write some code to

simulate a normal by rejection from a double exponen-

tial. Recall the algorithm

[1] simulate y ∼ exp(−|x|) and u ∼ U(0, 1)

[2] if u < exp(−y2/2 + |y| − 1/2) accept X = y and

stop. Otherwise repeat [1].

We break this job down into manageable pieces.

First write a function to sample y ∼ exp(−|x|) - and

test it!

q<-function(n=1) {
#simulate exp(-|x|)

X<-log(runif(n))

Y<-sample(c(-1,1),n,replace=T)

return(X*Y)

}

> q(n=4)
[1] -0.2589713443 0.0043643318 0.0007715165 -1.4679607563

> y<-q(1e4)

> a<-hist(y,100,freq=F)

> lines(a$breaks,0.5*exp(-abs(a$breaks)),col=2,lwd=2)

D
en

si
ty

−10 −5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

Then write a function implementing the rejection sam-

pler.

[1] simulate y ∼ exp(−|x|) and u ∼ U(0, 1)

[2] if u < exp(−y2/2 + |y| − 1/2) accept X = y and

stop. Otherwise repeat [1].

my_rnorm<-function() {

#simulate X

finished<-FALSE;

while (!finished) {

y<-q(n=1);

u<-runif(n=1)

p.over.Mq<-exp(-y^2/2+abs(y)-0.5)

finished<-(u<p.over.Mq)

}

return(y)

}

I illustrated how to test this in the practical solutions.

Try to write your code so it is easy to check and main-

tain. We mentioned modularity (breaking code ele-

ments up into functions). Information hiding (dont let

a function have information it doesnt need) makes code

easier to read and correct. Careful planning and com-

menting help. Give variables meaningful names.

For-loops and apply()

We try to avoid for-loops when we code. For-loops

tend to run slower and are harder to read.

#cumulative sum

n<-10; X<-rep(1,n); for (i in 2:10) X[i]<-i+X[i-1]; X

X<-cumsum(1:n); X

#sum x^2 x=1...n

tot<-0; for (x in 1:10) tot<-tot+x^2

sum((1:10)^2)

apply(object,row/col=1/2,function) is often use-

ful in this context. It applies the function to all the

entries in each row or column of the object.

> X<-matrix(c(1,2,3,4),2,2); X

[,1] [,2]

[1,] 1 3

[2,] 2 4

> apply(X,1,sum) #sum rows

[1] 4 6

> apply(X,2,max) #sum columns

[1] 2 4

> how many entries in each column less than 2.5?

> apply(X,2,function(x) {sum(x<2.5)})

[1] 2 0

We can often use apply() to replace for-loops

#simulate n Gamma(a,b)
a<-3; b<-4.1; n<-10; X<-numeric(n)
for (i in 1:n) {

tot<-0
for (j in (1:a)) {

tot<-tot-log(runif(1))/b
}
X[i]<-tot

}
X

#or
M<- -log(matrix(runif(a*n),a,n));
X<-apply(M,2,sum); X

Getting Data into R

hellung.txt is text file of data from an experiment

on the growth of Tetrahymena cells.

The cell concentration (conc) was set at the begin-

ning of the experiment and the average cell diameter

(diameter) was measured for two groups of cell cul-

tures where glucose was either added (glucose=1) or

not added (glucose=2) to the growth medium. A the-

oretical model predicts diameter proportional to the log

of concentration. The effect of glucose on the cell di-

ameter is of interest.

The data are a table, with one row for each observation

and a column for each variable. The first row gives

variable names.

We can use the read.table() function to read it. We

can read over the net or from a local file. If we use a

local file we have to give the path, or set the working

directory os the directory containing the file.

This table has a header line, so we tell R to expect a

header.

hd=read.table(’hellung.txt’,header=TRUE)

creates a data.frame with cases corresponding to rows

and variables to columns in the file.

If we have a data frame and want to save it we have

a few options. To save it as an array of numbers with

variable names as column headers

write.table(hd,’filename.txt’,header=TRUE)

How many observations are there, and what are the

variable names? dim(hd), names(hd)

Show me the first few rows, and basic properties of the

variables! head(hd),str(hd), summary(hd)

Show me the data!

#basic plotting

x=log(hd$conc); y=hd$diameter;

plot(x,y,xlab=’log(conc)’,ylab=’cell diameter’)

10 11 12 13

19
20

21
22

23
24

25
26

log(conc)

ce
ll

di
am

et
er

There are R-packages (of which

more anon) for reading special-

ized formats such as xls and im-

age formats.

The function and variable search path

When you type a function or variable name, R searches

for the object in a list called the search path.

search() shows you the databases in which R searches.

The first, ”.GlobalEnv”, is your R console workspace.

The last, ”package:base” has all the basic R functions.

If you attach() a data frame to the search path, the

variables inside the data frame can be found.

For example, you must type hd$glucose to get the

glucose numbers. Following attach(hd), you can

access it with just glucose. Now search() shows hd
in the path.

plot(log(conc),diameter) #an error
attach(hd)
plot(log(conc),diameter)

You can detach(’hd’) an object to remove it from

the path. You might do this if you wanted avoid a

conflict with something else with the same name. In

many commands you can specify where to look for the

variables, using the data= option. This is often easier

read, and shows explicitly which data are being used.

Data summaries Here are some useful functions.

mean(), median()
sd(), var(), cov(),cor()

range(), quantile(), summary()
min(), max(), pmin(), pmax()

which.max(), which.min()
sum(),cumsum(),cumprod()

Many of these functions have an argument na.rm which

needs to be set to TRUE in order to remove NAs from

the data.

There are no NA’s in these data so here is a simple

example: If eg=c(1,2,NA,3,4) then mean(eg) gives

an error but mean(eg,na.rm=T) gives 2.5, the mean

of (1, 2, 3, 4). R is forcing you to be explicit about the

NA-handling.

Applying functions over data, and subsetting

The apply() command is also very useful for applying

functions to all rows or all columns of an array or data

frame. For example, apply(hd,2,max) finds the max-

imum of each variable.

Sometimes we want to work on subsets of a data frame.

Boolean variables are converted to array indices when

they appear as the index to a vector.

For example, to compare the mean cell diameters for

cells with and without glucose we might calculate mean(diameter[glucose=
and mean(diameter[glucose==2])

We can create a new data frame from the subset of ob-

servations of interest: for example, hd.g1=hd[glucose==1,]
pulls out the rows of hd that satisfy our condition, and

takes all columns.

Plotting Data: Histograms

Graphical data displays provide insight to data. Think

carefully about how to display data to highlight features

of interest. We begin with simple exploratory plots.

hist(diameter,freq=FALSE) gives a histogram of the

numbers in the variable diameter. The y-axis shows

counts.

hist(diameter,freq=TRUE) gives a histogram with

area scaled to one, like a probability density.

par(mfrow = c(1,2)); hist(diameter); hist(conc)
puts two entire plots in one window, in 1 row and 2

columns.

You may need to adjust the number of histogram bins.

The default ’Sturges’ rule gives too few on large data

sets. Try the ’Scott’ rule, fix the number yourself, or

give a vector of bin locations.

n = 100000; x = rnorm(n)

par(mfrow = c(2,2));

hist(x, main = "Sturges")

hist(x, breaks = "Scott", main = "Scott")

hist(x, breaks = sqrt(n),main=’sqrt(n)’)

hist(x, breaks = seq(from=-5,to=5,length.out=200),

main=’my breaks’)

Overlays

The lines(), points() and text() commands can

be used to overlay lines, points and text on an existing

plot (already created with plot() or hist()).

For example, we can overlay a density estimate (com-

puted using the density() function) on a histogram.

hist(diameter,freq=FALSE);

lines(density(diameter),col=2)

Here lines will recognize density() output and done

something sensible.

Histogram of diameter

diameter
D

en
si

ty

20 22 24 26

0.
00

0.
05

0.
10

0.
15

0.
20

hist(diameter,freq=FALSE);

d=density(diameter)

lines(dx,dy,col=2)

has the same effect.

Boxplots and the R formula notation

These are useful for plotting a continuous variable against

one or more discrete variables.

The R formula notation is useful here. The formula

variable1~variable2

means variable1 is a response variable and depends on

variable2.

For example, we expect the distribution of cell diame-

ters to be different depending on whether or not glucose

was used.

boxplot(diameter~glucose,xlab=’glucose’,ylab=’diameter’)

1 2

19
20

21
22

23
24

25
26

glucose

di
am

et
er

lower whisker

lower quartile

median

upper quartile

upper whisker

Points beyond the outer whiskers are possible outliers.

Scatter plots

We started with an elementary plot. By varying color

(col) and point character pch from point to point, you

can highlight different subsets of data within the plot.

For example

plot(log(conc), diameter, col=glucose, pch=glucose)

The color and shape of each point is decided by its

glucose value.

We can overlay a line using the abline(intercept,slope)
command, which simply takes the intercept and slope.

abline(37.806,1.264)
abline(36.327,1.264,col=2)

We can plot or overlay a function using curve()

curve(37.806-1.264*x, from=8 , to=15, add=T)

curve(36.327-1.264*x, from=8 , to=15, add=T, col=2)

10 11 12 13

19
20

21
22

23
24

25
26

log(conc)

di
am

et
er

Debugging

Your have just implemented an algorithm in R. It ran

without reporting errors on the first input you tried.

What do you do? Answer: assume it contains errors.

Test it thoroughly using input for which you know the

correct output.

You are implementing an algorithm in R. It crashes∗.

What do you do?

When an error occurs R saves the list of active func-

tions. traceback() prints that list. See example in L5.R.

∗terminates with an error message

You cant see the values of variables local to a function

you called. You could use print() or cat(sprintf())

commands to see what values variables take inside the

function.

debug() lets you see what’s going on inside a func-

tion interactively. You can examine (or change!) the

value of variables, or execute any other R command,

inside the function. You can also execute a debugger

command

• n - next : execute the next line of code

• c - continue : let the function continue running

• Q - quit the debugger

undebug() can be used to turn off debugging on the

function. The browser() command can also be put

inside functions to start the debugger.

Try debug(my rnorm) and then my rnorm().

This (ie debug()) is like desk-checking a programme.

We pretend we are the computer and carry out the

programme instructions by hand on a piece of paper. I

usually use this as a last resort to fix a programme.

Saving a session

Data come to us in many different formats. R has

functions to read them.

It sometime useful to save everything in the workspace

(so we can quit, and continue where we left off later).

save.image(file = ”MyPracSession.Rdata”)

does that. To bring the session back up,

load(file = ”MyPracSession.Rdata”)

R saves in a compressed machine readable format, not

easily read and edited.

