
Part A Simulation and Statistical Programming HT15

Lecturer: Geoff Nicholls

University of Oxford

Lecture 6: functions and flow control (in R)

Notes and Problem sheets are available at

www.stats.ox.ac.uk\ ∼nicholls\PartASSP

Overview for lecture 6

1. R functions, function arguments and scoping

2. Flow control with for(), if()-else and while().

3. Examples (Sieve of Eratosthenes and Newton’s method).

Functions: what and why

What: functions take input, perform operations on the

input and return output. Functions help us break down

a big problem into modules. We can get each func-

tion working accurately and build up a working system.

Functions help us avoid repeating the same sequence

of commands in lots of different places.

The general definition of a function is :

MyFunction = function(arguments) expression

The arguments can defined with defaults. When the

function is called the arguments are passed to the ex-

pression for evaluation.

A simple expression is a statement (like a<-pi^2/2).

A compound expression is a sequence of statements in

braces: {statements}. A function expression returns

the last evaluated statement. We will use the return()

function to end expressions to spell out to the reader

what the function returns.

A function computing the p-norm





n
∑

i=1

|xi|
p





1/p

of

x ∈ Rn:

g<-function(x,p=2) {
#my pnorm function
y=abs(x)
z=sum(y^p)
return(z^(1/p))

}

g(c(3,4)) returns 5 (no p set so default p=2 used).

g(c(3,4),1) or g(c(3,4),p=1) returns 7.

A function returns the value of the last statement eval-

uated so the return() command is often omitted.

Variable scope

The scope of a variable tells us where the variable is

visible. Generally speaking you want a variable to be

visible only where it is needed, to avoid clashes with

other variables that have the same name.

In R, the variables in a function are local to the func-

tion. The environment calling the function (for ex-

ample, the R-console workspace, or another function)

cant see the variables inside the function (only the re-

turn values). On the other hand the called function can

see the variables in the environment that called it (the

parent environment).

For example, if we define a function f() in the R-

console

f<-function(x) {

a=b*x^2

return(a)

}

set a=2, b=1 and call f(5) the function returns 25.

The function found b in the workspace that called it.

In the console a is still 2 because the function created

its own local variable a.

for loops

A for-loop repeats some commands a fixed number of

times.

Example: Plan and write a function computing the first

n terms in the Fibonacci sequence 1 1 2 3 5 8 13 21

We will build up the sequence in a vector x = (x1, x2, ..., xn).
In order to calculate the ith entry we will add xi−1 and

xi−2, the previous two elements of the vector, and write

the result into the ith entry in x.

fibonacci = function(n) {

#evalute first n terms in Fibonacci sequence

x = numeric(n)

x[1:2] = 1

for(i in 3:n) {x[i] = x[i-2] + x[i-1]}

return(x)

}

The general form is

for (variable in sequence) { statements }

if and if else statements

The if() statement controls which statements are ex-
ecuted.

if (x > 2) {
y = 2 * x

} else {
y = 3 * x

}

sets y=3 when x = 1 and sets y=8 when x=4.

Can have a simple if() without the else. The follow-
ing gives a warning when x=1 and y=3 (so z=NaN)

z=(x-1)/(y-3)
if (is.nan(z)) warning(’z is not a number’)

The while() loop

Repeat a set of statements until a condition is satisfied.

Write an R-function to simulate a standard normal ran-

dom variable conditioned to be greater than a for given

real a.

Z<-function(a) {

z=rnorm(1) #rnorm(1) simulates 1 N(0,1) rv

while (z<a) {

z=rnorm(1)

}

z

}

The code repeats the simulation until the condition

is satisfied. Now Z(2) simulates Z|Z > 2 for Z ∼
N(0, 1).

Returning more than one function output

Use a list to return multiple outputs to the calling en-

vironment.

Example: modify the previous example to return the

simulated value and the number of trials.

Z<-function(a) {

count=1

z=rnorm(1)

while (z<a) {

z=rnorm(1)

count=count+1

}

return(list(value=z,trials=count))

}

> Z(3)

$value

[1] 3.224885

$trials

[1] 773

> 1/(1-pnorm(3))

[1] 740.7967

The Newton method for root finding

Suppose we wish to find a root of an algebraic equation

f(x) = 0.

If f(x) has a derivative f ′(x), then the following itera-

tion will in general converge to a root if started close

enough to the root.

x0 = initial guess

xn = xn−1 −
f(xn−1)

f ′(xn−1)

The algorithm runs until |f(xn)| < ǫ.
The idea is based on the Taylor approximation

f(xn) ≈ f(xn−1) + (xn − xn−1)f
′(xn−1)

NOTE : this method may fail to converge.

Newton-Raphson Example

Suppose f(x) = x3 + 2x2 − 7.

f <- function(x) {x^3 + 2*x^2 - 7}
f.prime <- function(x) {3*x^2 + 4*x}

nr <- function(x, tol = 0.001) {
#Newton-Raphson iteration for f
while(abs(f(x)) > tol) {

x = x - (f(x) / f.prime(x))
}
return(x)

}

The return value for nr(4) is approx. 1.428820. Com-

pare 1.428817702 (Maple, numerical evaluation of ex-

act solution to cubic).

Example (first iteration shown starting at x0 = 4).

−4 −2 0 2 4

−
50

0
50

10
0

15
0

f(x)=x^3 + 2*x^2 − 7

x

f (
x)

See you next week

Homework: install R and complete the practical in your

own time.

