
Part A Simulation and Statistical Programming HT15

Lecturer: Geoff Nicholls

University of Oxford

Lecture 4: Statistical Programming and R

Notes and Problem sheets are available at

www.stats.ox.ac.uk\ ∼mvihola\ssp
www.stats.ox.ac.uk\ ∼nicholls\PartASSP

Today: Statistical Programming in R

• an introduction to basic use of R

• some examples from the simulation part of the course

• 1 hour of me doing R demos and lecturing

• 1 hour of you doing a practical at the computers

R is an open-source package for Statistical Computing

It is freely available - http://cran.r-project.org/

What is Statistical Programming?

There are three elements: statistics, algorithms and

carrying out statistical analysis on a computer.

In a typical study we begin by loading the data into the

computer, and making an exploratory analysis of the

data (EDA).

We look at the raw numbers, and visualize them by

plotting graphs that reveal patterns in the data. We

may have a model we wish to fit to the data, and a

hypothesis we wish to test.

Statistics tells us what objects we need to calculate in

order to make the fit and carry out the test.

An algorithm tells us how to calculate those objects. It

is a sequence of operations that carry out a given task.

An algorithm is a mathematical object, with properties

we can prove. We give an (informally stated) algorithm

to convert a decimal to binary later in this lecture.

Finally we go back to the computer and implement the

algorithm (or use an implementation someone else has

written). This is a computer programme and it should

carry out the calculations dictated by the algorithm.

Two correct implementations of the same algorithm

can differ, for example in efficiency and in the range of

cases they handle correctly.

Getting started

Begin by selecting Start > all programmes > R The

R Graphical User Interface RGui opens, with an inter-

nal window, the R Console, into which you type com-

mands.

You will often want to keep a record of your work from

an R session. You can do this by starting an R script:

File > New Script. This opens a new file in an R

editor window.

You can type R commands in the script, which can

then be selected (using the mouse) and evaluated (us-

ing Ctrl-R) in the R Console.

You also make notes in the script and save the script

for the future File > Save (you need to select the R

editor window for the script you want to save using the

mouse).

Arithmetic Operators

• Arithmetic operators: +, -, /, *, ^ where x^y
is xy.

• %% for modulo reduction, %/% for integer division,

%*% for matrix multiplication

Example

• Type 2 + 3 <return>

• Type 6 * 9 + 3 / 5 <return>

• Type 3^4 <return>

• Type 5^(-5.6+3) <return>

• Type 143 %% 6 <return>

Mathematical functions

Many mathematical functions are available e.g.

exp(x), log(x), log10(x), sqrt(x)

sin(x), cos(x), tan(x)

asin(x), acos(x), atan(x)

sinh(x), cosh(x), tanh(x)

asinh(x), acosh(x), atanh(x)

abs(x), min(x), max(x)

• Type exp(-4 * 4 / 2) / sqrt(2 * pi)<return>

• Type log(4)<return>

Functions arguements

Functions can have more than one argument. These

can identified by their names, or by order.

• Type choose(6,3)<return>

• Type choose(3,6)<return>

• Type choose(n=6,k=3)<return>

• Type choose(k=3,n=6)<return>

The first two differ, the last two give the same answer.

Functions for familiar distributions

rDBN(),dDBN(),pDBN(),qDBN() are random numbers,

the pdf/pmf, the cdf and quantiles for the distribution

DBN.

rexp(n=10,rate=1) gives 10 Exp(1) rv.

pnorm(q,mean=0,sd=1) is P (Z ≤ q) for Z ∼ N(0, 1)

dpois(x,lambda) is exp(−λ)λx/x!

If q=qt(p=0.975,df=4) then 0.975 = P (X ≤ q), X ∼
t(4).

What does this return? rchisq(n=10,df=5)

Getting Help

• help(command) or ?command if you know the com-

mand name

• Type help.search("subject") or ??subject for

a subject

• ?‘&&‘ for operators or words such as if

• help.start() for R online documentation

• Help menu in Windows gives still more options

Vectors and sequences Vectors or sequences of numbers

can also be created, stored and manipulated

• They can be created manually

x1 = c(0.1, 0.2, 0.3, 0.4, 0.5) <return>

• Functions apply to vectors element by element

Example

if x = (1, 2, 3, 4) and y = (5, 6), then

x + 3 = (4, 5, 6, 7)

x + y = (6, 8, 8, 10)

x^2+max(x)=(5,8,13,20)

Logical Operators

• == (equal), != (not equal), >, <, >=, <=

Example

3 < 4 <return>

c(0.1,0.3,0.6) > 0.23 <return>

• ! (not), | (or), || (or), & (and) && (and)

• Note difference between |,& and ||,&&: former

work on vectors, latter (a) only consider first ele-

ment and (b) stop as soon as the outcome is known.

Example (a)

if x = (TRUE, FALSE, TRUE)

and y = (FALSE, TRUE, TRUE)

x | y = (TRUE, TRUE, TRUE), x || y = (TRUE), then

x & y = (FALSE, FALSE, TRUE), x && y = (FALSE)

Example (b)

If b=2 and we execute (a=1)<0 & (b=-1)<0 then b=-1

but if b=2 and we execute (a=1)<0 && (b=-1)<0 then

b=2 (still). In the first case we have a sideffect (b

changes value). It is usually a bad idea to allow them

in your code so we would not typically include an assign-

ment b=-1 in a test (b=-1)<0 irrespective of whether

we used & or &&. The && form saves time evaluating

later tests when the result is already known.

Error messages

• The R commands you enter will sometimes contain

errors.

• R will either report an Error message or prompt you

to complete the command.

Example

Incomplete brackets i.e. (4+8<return>
prints a + which means you need to enter the remaining

brackets.

Example

Too many brackets i.e. (4+8))<return>
results in an error message.

Example

Using the wrong type of brackets i.e. exp{4}<return>
results in an error message.

Computer representation of numbers

• On a computer numbers are stored in binary rather

than decimal.

• Consider the number 1197.625.

In decimal we write

103 102 101 100 10−1 10−2 10−3

1 1 9 7 6 2 5

In binary, the number is

210 29 28 27 26 25 24 23 22 21 20 2−1 2−2 2−3

1 0 0 1 0 1 0 1 1 0 1 1 0 1

To convert from a base-10 integer to base-2 (binary),

the number is divided by two, and the remainder is the

least-significant bit. The (integer) result is again di-

vided by two, its remainder is the next most significant

bit. This process repeats until the result of further di-

vision becomes zero.

1197 = 2 ∗ 598 + 1 → 1

598 = 2 ∗ 299 + 0 → 0

299 = 2 ∗ 149 + 1 → 1

149 = 2 ∗ 74 + 1 → 1

74 = 2 ∗ 37 + 0 → 0

37 = 2 ∗ 18 + 1 → 1

18 = 2 ∗ 9 + 0 → 0

9 = 2 ∗ 4 + 1 → 1

4 = 2 ∗ 2 + 0 → 0

2 = 2 ∗ 1 + 0 → 0

1 = 2 ∗ 0 + 1 → 1 → 10010101101

To convert from a base-10 fraction to base-2 (binary),

the number is multiplied by two, if the result is > 1 the

most-significant bit is 1 otherwise 0. The (fractional)

remainder is again multiplied by two and compared to

1. This process repeats until the remainder is zero.

0.625 ∗ 2 = 1.25 → 1

0.25 ∗ 2 = 0.5 → 0

0.5 ∗ 2 = 1 → 1 → .101

So, 1197.62510 = 10010101101.1012

• In decimals, some fractions are recurring. The same

can be true in binary. Consider 0.8

0.8 ∗ 2 = 1.6 → 1

0.6 ∗ 2 = 1.2 → 1

0.2 ∗ 2 = 0.4 → 0

0.4 ∗ 2 = 0.8 → 0

etc

So, 0.810 = 0.11002

• Fractions in binary only terminate if the denomina-

tor has 2 as the only prime factor.

• Modern computers use 64 bits to represent numbers

so some numbers (like 0.8) must be approximated.

• Care is needed when testing whether 2 numbers are

the same:

– x <- seq(0, 0.5, 0.1)##generate a sequence

from 0 to 0.5 in steps of 0.1

– type x ##Look at x

– is x equal to (0, 0.1, 0.2, 0.3, 0.4, 0.5)?

– To find out, type

x==c(0, 0.1, 0.2, 0.3, 0.4, 0.5)

[1] TRUE TRUE TRUE FALSE TRUE TRUE

Rounding problems Tiny inaccuracies can accumulate:

• the sample variance of a vector x is often calculated

as var(x) = (
∑

x2 − nx̄2)/(n− 1)
or, in R

(sum(x^2) - n * mean(x)^2) / (n - 1)

• Try it with x <- seq(1:100)

• Now with x <- seq(1:100) + 10000000000

• compare with var(x)

• Can you see why there was a problem?

Moral ”Worry, but, if you use R, don’t worry too much,

because R has worried for you.”

Try it yourself

Begin by selecting Start > all programmes > R

The R Graphical User Interface RGui opens, with an

internal window, the R Console, into which you type

commands.

You can open the lecture script: File > Open Script.

The script you want is L1.R on the H: drive.

After 5 minutes we will continue with the lecture.

Basic Types of Variables Variables are the equivalent of

memories in your calculator. But you can have unlim-

ited (almost!) quantities of them and they have names

of your choosing. And different types. The basic types

are

• integer

• double

• character

• logical: these take one of the two values TRUE or

FALSE (or NA, see later)

• factor or categorical

More Specialised Classes

As well as the basic types of variables, R recognises

many more complicated objects such as

• vectors, matrices, arrays: groups of objects all of

the same type. The practical will show you how to

use these.

• lists of other objects which may be of different types

• Specialised objects such as Linear Model fits

Special values of objects

There are some types of data which need to be treated

specially in calculations:

• NA The value NA is given to any data which R knows

to be missing. This is not a character string, so

a character string with value ‘NA’ will be treated

differently from one with the value NA.

• Inf The result of e.g. dividing any non-zero number

by zero

• NaN The result of the operation isnt defined (eg

0/0, Inf-Inf, log(-1))

Factors: Factors are variables which can only take one

of a finite set of discrete values. They naturally occur

as vectors, and can be

• numeric e.g. drug doses with values 1mg, 2mg, 5

mg

• or character e.g. voting intention with values Lib-

eral Democrat, Conservative, Labour, Other

Although factors are stored as numbers, along with the

label corresponding to each number, they cannot be

treated as numeric. Would it make sense to ask R to

calculate mean(voting intention)?

A more useful function for factors is table which will

count how many of each value occur in the vector.

More about Factors

• Ordered Factors

Some factor variables have a natural ordering. Drug

doses do, but voting intentions usually do not. R

will treat the two types differently. It is important

not to allow R to treat non-ordered factors as or-

dered ones, since the results could be meaningless.

• Creating factors

Use cut to create factor variables from continuous

ones:

Example

age <- runif(100) * 50

table(cut(age, c(0, 10, 20, 30, 40, 50)))

(0, 10] (10, 20] (20, 30] (30, 40] (40, 50]

17 19 19 24 21}

Data frames

• For storing data which is a collection of observa-

tions (rows) of a set of variables (columns). E.g.

book titles and prices.

• Similar to a matrix but variables in different columns

can have different types.

• Always the same number of entries in each row,

although some may be missing (NA).

• Can be formed by reading in data e.g. from a

spreadsheet, or constructed using the function data.frame.

Chick weights data frame

weight feed

1 179 horsebean

2 160 horsebean

3 136 horsebean

4 227 horsebean

.

.

.

Lists A data frame is a kind of list, which is a vector

of objects of possibly different types. For example, an

employee record might be created by

Empl <- list(employee = "Anna", spouse = "Fred",

children = 3, child.ages = c(4, 7, 9))

Components are always numbered and may be referred

to by number. e.g. Empl[[2]]. If they are named, can

also be referred to by name using the $ operator eg.

Empl$spouse

Note that Empl[4] is a list of length 1, while Empl[[4]]

is a numeric vector of length 3.

Keeping track of objects

• Once you have created some objects, how do you

remind yourself what you called them?

• Use a function such as ls() or str().

• ls() lists the names of all the objects in your workspace.

• str(Empl) gives a little information about the ob-

ject Empl.

str(Empl)
List of 4
$ employee : chr "Anna"
$ spouse : chr "Fred"
$ children : num 3
$ child.ages : num [1:3] 4 7 9

More functions paste

• paste adds together character vectors: paste(c(1,

2), c(’x’, ’y’, ’z’)) is a character vector of

length 3

[1] "1 x" "2 y" "1 z"

Notice the recycling of the first argument.

• The pieces of the result can be joined together us-

ing the argument collapse:

paste(c(1, 2), c(’x’, ’y’, ’z’), collapse=’

’) is a character vector of length 1,

"1 x 2 y 1 z"

Yet more functions sort,table

• sort(x) sorts the vector x into increasing order

• sort(x, decreasing=TRUE) sorts the vector x into

decreasing order

• table(x) creates a table showing the count of el-

ements equal to each value. Most useful where x is

a vector of factors or integers

• e.g. table(rpois(20, 5)) gives

2 3 4 5 6 7 8
3 2 2 6 3 3 1

Installing R on your own machine

• Visit CRAN at http://cran.r-project.org/

• Find the appropriate binary
– Windows:

http://cran.r-project.org/bin/windows/base/release.htm

– Mac: select as appropriate

– Linux: select as appropriate.

• After installation, create a shortcut which starts in

your folder (using right-click/properties)

• Update packages via the packages menu or using

update.packages()

Books

In addition to the extensive documentation and help

system that is included in R there are three main books

that we recommend.

‘A First Course in Statistical Programming with R’ by

W. John Braun and Duncan Murdoch, ISBN 0-521-

69424-8

‘Introductory Statistics with R’ by Peter Dalgaard, ISBN

0-387-95475-9

- a very good introduction to R that includes many

biostatistical examples and covers most of the basic

statistics covered in this course.

‘Modern Applied Statistics with S’ by Bill Venables and

Brian Ripley, ISBN 0- 387-95457-0

- a comprehensive text that details the S-PLUS and R

implementation of many statistical methods using real

datasets.

Practical

• Practical is a mixture of getting you to enter com-

mands and solving problems

• If you use the same computer each week the files

from your last session will be available. So note

down the number of the computer you have used.

• Use a script and save the script to the H: drive.

Save it with a file name that includes your name.

• May want to bring a memory stick to make a copy

of your script or email the script to yourself.

• Web browsing, facebook etc are banned from prac-

tical sessions.

• To quit R type q(). Then select No when asked if

you want to save the session.

