Part A Simulation and Statistical Programming HT15

Lecturer: Geoff Nicholls

University of Oxford

Lecture 14: MCMC, convergence; Implementing Bayesian inference using MCMC

Recall the Metropolis Hastings MCMC algorithm

MCMC targeting $p(x)=\tilde{p}(x) / Z_{p}$ using proposal $Y \sim q(y \mid x)$.
Let $X_{t}=x . X_{t+1}$ is determined in the following way.
[1] Draw $y \sim q(\cdot \mid x)$ and $u \sim U[0,1]$.
[2] If

$$
u \leq \alpha(y \mid x) \text { where } \alpha(y \mid x)=\min \left\{1, \frac{\tilde{p}(y) q(x \mid y)}{\tilde{p}(x) q(y \mid x)}\right\}
$$

set $X_{t+1}=y$, otherwise set $X_{t+1}=x$.

We initialise this with $X_{0}=x_{0}, p\left(x_{0}\right)>0$ and iterate for $t=$ $1,2,3, \ldots n$ to simulate the samples $X_{0}, X_{1}, X_{2}, \ldots X_{n}$ we need.

Recall the Ising model:
Denote by $\Omega=\{0,1\}^{n^{2}}$ the set of all binary images $X=\left(X_{1}, X_{2}, \ldots, X_{n^{2}}\right)$, $X_{i} \in\{0,1\}$, where $i=1,2, \ldots, n^{2}$ is the cell index on the square lattice of image cells. Let $\# x$ give the number of disagreeing neighbors in the binary image X.

The Ising model is the following distribution over Ω :

$$
\pi(x)=\exp (-\theta \# x) / Z
$$

Here θ is a smoothing parameter which is usually taken to be greater than zero and Z is a normalizing constant.

MCMC for the Ising Model

Recall the algorithm we wrote down earlier this week. Let $X^{(t)}=$ x. $X^{(t+1)}$ is determined in the following way.
[1] Chose $i \sim U\left\{1,2, \ldots, n^{2}\right\}$ and set $x^{\prime}=x$ except $x_{i}^{\prime}=1-x_{i}$.
[2] With probability $\alpha\left(x^{\prime} \mid x\right)$ set $X^{(t+1)}=x^{\prime}$ and otherwise set $X^{(t+1)}=x$.

Here $\alpha\left(x^{\prime} \mid x\right)$ is

$$
\begin{aligned}
\alpha\left(x^{\prime} \mid x\right) & =\min \left\{1, \frac{\pi\left(x^{\prime}\right) q\left(x \mid x^{\prime}\right)}{\pi(x) q\left(x^{\prime} \mid x\right)}\right\} \\
& =\min \left\{1, \exp \left(-\theta\left(\# x^{\prime}-\# x\right)\right)\right\}
\end{aligned}
$$

(refer R-file for implementation)

Remarks on implementation and monitoring MCMC

We work on a log scale if possible, to avoid overflow errors.

Worst
if (runif (1) $<\exp (-$ theta*hashXp)/exp(-theta*hashX)) \{ ...

Better

if (runif(1)<exp(theta*(hashX-hashXp))) \{...

Best
if $(\log (\operatorname{runif}(1))<$ theta* (hashX-hashXp)) \{ ...

How do we monitor convergence for a multivariate problem like the Ising model? We monitor a few summary statistics - for example, $\# x$, or maybe $w(x)=\sum_{i} x_{i}$, the number of white pixels. We want to see this statistic converging to a stationary process. We repeat the run from different starting points and check we get essentially the same histogram of sampled values.

We usually sub-sample the output - this is just for practical reasons. The large densely sampled arrays don't add any interesting detail and are unwieldy to plot and compute on.

This code samples $w(x)$ every SS steps, and plots $w(x)$ and the current state if show=TRUE.

```
if (!(j%%SS)) {
    wp[j/SS+1]=sum(X)
    if (show) {
        par(mfrow=c(1,2));
        plot(wp,xlim=c(0,N/SS),ylim=c(0,n^2)); abline(h=n^2/2)
        image(X,col=gray(0:255/255), axes=F); box()
    }
}
```

Plotting is time consuming so if we just want to gather a sample of X and a $w(x)$-time series we switch it off.

Bayesian image recovery

Let X be an unknown true image. Suppose

$$
X \sim \operatorname{Ising}(\theta)
$$

with θ known. The prior for X is $\pi(x) \propto \exp (-\theta \# x)$.
Suppose we observe X through a 'noisy channel'. At pixel $i=$ $1,2, \ldots, n^{2}$ we observe

$$
Y_{i}=X_{i}+\epsilon_{i}, \quad \text { with } \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

iid, and σ known. The likelihood for x_{i} is $L\left(x_{i} ; y_{i}\right)=N\left(y_{i} ; x_{i}, \sigma^{2}\right)$ so

$$
L(x ; y) \propto \prod_{i=1}^{n^{2}} \exp \left(-\left(x_{i}-y_{i}\right)^{2} / 2 \sigma^{2}\right)
$$

If we observe $Y=y$ the probability that the unknown true image X equals x is

$$
\begin{aligned}
\pi(x \mid y) & \equiv \operatorname{Pr}(X=y \mid Y=y) \\
& \propto L(x ; y) \pi(x) \\
& \propto \exp \left(-|x-y|^{2} / 2 \sigma^{2}\right) \exp (-\theta \# x)
\end{aligned}
$$

where $|x-y|^{2}=\sum_{i}\left(x_{i}-y_{i}\right)^{2}$.

We will simulate $X \sim \pi(x \mid y)$ and use the samples to estimate $E\left(X_{i} \mid Y=y\right)$ for each cell, $i=1,2, \ldots, n^{2}$.
(refer to R file for implementation)

Modify our MCMC for $\pi(x)$ to target $\pi(x \mid y)$.

Essentially all we have to do is replace the acceptance probability in the algorithm targeting $\pi(x)$,

$$
\begin{aligned}
\alpha\left(x^{\prime} \mid x\right) & =\min \left\{1, \frac{\pi\left(x^{\prime}\right) q\left(x \mid x^{\prime}\right)}{\pi(x) q\left(x^{\prime} \mid x\right)}\right\} \\
& =\min \left\{1, \exp \left(-\theta\left(\# x^{\prime}-\# x\right)\right)\right\}
\end{aligned}
$$

by the acceptance probability in the algorithm targeting $\pi(x \mid y)$,

$$
\begin{aligned}
\alpha\left(x^{\prime} \mid x\right)= & \min \left\{1, \frac{\pi\left(x^{\prime} \mid y\right) q\left(x \mid x^{\prime}\right)}{\pi(x \mid y) q\left(x^{\prime} \mid x\right)}\right\} \\
= & \min \left\{1, \exp \left(-\theta\left(\# x^{\prime}-\# x\right)\right.\right. \\
& \left.\quad \times \exp \left(-\left(\left|x^{\prime}-y\right|^{2}-|x-y|^{2}\right) / 2 \sigma^{2}\right)\right\}
\end{aligned}
$$

True 0/1

mcmc sample $X \mid Y$

noisy sigma=1

post mean

