
Part A Simulation and Statistical Programming HT14

6th Practical: MCMC, convergence; Bayesian inference.

1. (a) Write an MCMC algorithm targeting Exp(µ) with mean µ = 1. Check your MCMC.

(b) Suppose we have an observation X ∼ Exp(µ) and wish to estimate µ. If X = x with x = 1.7

(say) and we have a Gamma(a = 3, b = 1) prior for µ the posterior is

π(µ|x) = µ−1 exp(x/µ)µa−1 exp(−bµ)

= µa−2 exp(−bµ − x/µ)

Write an MCMC algorithm targeting π(µ|x) and use it to give an estimate the posterior mean

for µ|x.

2. In lecture 12 we gave an MCMC algorithm to sample a mixture of bivariate normals

p(x) ∝ 0.5N(x; µ1, Σ1) + 0.5N(x; µ2, Σ2)

with x = (x1, x2) etc.

a=3; n=2000

mu1=c(1,1); mu2=c(5,5); S=diag(2); S1i=S2i=solve(S);

X=matrix(NA,2,n); X[,1]=x=mu1

for (t in 1:(n-1)) {

y<-x+(2*runif(2)-1)*a

MHR<-f(y,mu1,mu2,S1i,S2i)/f(x,mu1,mu2,S1i,S2i)

if (runif(1)<MHR) x<-y

X[,t+1]<-x

}

#MCMC simulate X_t according to a mixture of normals

f<-function(x,mu1,mu2,S1i,S2i,p1=0.5) {

#mixture of normals, density up to constant factor

c1<-exp(-t(x-mu1)%*%S1i%*%(x-mu1))

c2<-exp(-t(x-mu2)%*%S2i%*%(x-mu2))

return(p1*c1+(1-p1)*c2)

}

(a) Modify the MCMC so that the proposal is yi ∼ N(xi, a
2), i = 1, 2.

(b) Modify the mixture distribution so that it targets

p(x) ∝ (1/3)N(x; µ1, Σ1) + (1/3)N(x; µ2, Σ2) + (1/3)N(x; µ3, Σ3)

with µ3 = (9, 9)T and Σ3 = I2 (same as Σ2 etc). Run your MCMC and make a scatter plot of

the run in ℜ2.



(c) Run your MCMC for varying values of a such as a = 0.1, 1, 10, 100 plotting the MCMC trace of

X[1, ], the first component.

(d) How would you define the “best” value of a?

3. A binary image has been corrupted by “salt and pepper” noise. If the true image was X , we observe

Y where

Yi =

{

Xi with probability p
1 − Xi otherwise

Use the Ising model prior for X with smoothing parameter θ = 0.6. Let |X − Y | give the number of

pixels disagreeing between X and Y . The likelihood for X is

L(X ; Y ) = pn
2−|X−Y |(1 − p)|X−Y |.

Modify the MCMC code (which targets the posterior for the normal error model with Ising prior) from

the lecture to target the posterior distribution

π(x|y) ∝ pn
2−|X−Y |(1 − p)|X−Y | exp(−θ#x).

Simulate X |θ = 0.6 using the Ising code from today and add S&P noise with p = 0.8 to generate Y .

Estimate the posterior mean for X |Y .


