Part A Simulation and Statistical Programming Hilary 2014 Problem Sheet 4, due Wednesday 5pm Week 8.

Please email solutions in a single well-commented R-script to

andreas.anastasiou@jesus.ox.ac.uk

Q1. Here is an algorithm converting a non-negative number 0<x<1 to binary.

Let b be the binary representation of x. If x is zero or one then set b=x. Otherwise compute the first j binary places as follows. Let i=1 and y=2x. If y is greater than or equal one set b[i]=1 and x=y-1, and otherwise set b[i]=0 and x=y. If x is now zero then stop (as there are no more non zero places) and otherwise increase i by one and repeat until i=j and b[j] is evaluated.

- (a) Write an R function implementing the algorithm you wrote down in (a). Your function should take as input a non-negative fraction x between 0 and 1 and return the corresponding binary representation, accurate to 56 binary places. Represent the binary number as a vector, so for example decimal 0.125 becomes c(0,0,1) in binary.
- (b) At what binary place do R's numerical values for 0.3 and 0.1+0.1+0.1 differ?
- Q2. Quick sort is a method for sorting a vector of numbers. A vector $\mathbf{x} = \mathbf{c}(\mathbf{x}1, \mathbf{x}2, \dots, \mathbf{x}n)$ is given. The function $\mathbf{s} = \mathbf{q}\mathbf{s}\mathbf{o}\mathbf{r}\mathbf{t}(\mathbf{x})$ returns a vector \mathbf{s} of the same length as \mathbf{x} with the entries of \mathbf{x} given in numerically increasing order.

The algorithm works as follows. If the input vector x is empty (x=c(), so n=0), or has length n=1, the function returns s=x. Otherwise, pick a pivot (for example x[1]). Split the vector into entries smaller than the pivot x[1], say y=(x[i]: x[i]<x[1], i=2...n) and greater than or equal x[1], say z=(x[i]: x[i]>=x[1], i=2...n). Call qsort() to sort the (possibly empty) vectors y and z, and return s=(qsort(y),x[1],qsort(z)).

- (a) Plan and write a recursive R function implementing Quick sort.
- (b) Show that the runtime of Quick sort (measured in comparions) is $O(n^2)$ for the worst case input.
- Q3. Consider a sequence of observations $x_1,...,x_n$. Let μ_i and σ_i^2 denote the mean and sample variance of the first i observations $x_1,...,x_i, i \leq n$. How many operations (additions/subtractions or multiplications/divisions) are needed to calculate the sequence of means $\mu_1,...,\mu_{n^i}$ if each mean is calculated separately?
- (a) Derive an expression for μ_{i+1} in terms of μ_i and x_{i+1} and write an R function that calculates $\mu_1,...,\mu_n$ using this sequential formula. How many operations will this function use?
- (b) Now consider the sequence of sample variances $\sigma_1^2,...,\sigma_n^2$. Calculate the number of operations needed to calculate this sequence by evaluating each variance separately, and using a sequential method.

- Q4. Consider the normal linear model $Y = X\beta + \varepsilon$ where Y is a vector of n observations, X is an nxp matrix with each column containing a different explanatory variable and ε is vector of n independent normal random errors with mean zero and unknown variance σ^2 . The maximum likelihood estimator $\hat{\beta}$ for β is $\hat{\beta} = (X^TX)^{-1}X^TY$. The sample variance S^2 is $S^2 = \frac{1}{n-1}(X\hat{\beta} Y)^T(X\hat{\beta} Y)$. The standard error for $\hat{\beta}_i$ is $\operatorname{se}(\hat{\beta}_i) = S\sqrt{[(X^TX)^{-1}]_{ii}}$.
- (a) The trees data give Girth, Height and Volume measurements for 31 trees. Fit the normal linear model $y = \beta_1 + x_{girth}\beta_2 + x_{height}\beta_3 + \varepsilon$ using data(trees) and summary(lm(Volume~Girth+Height, data=trees)) and briefly interpret the output.
- (b) Write a function of your own (using solve() or your solution to Q6, not lm()) to fit a normal linear model. Your function should take the 31x1 vector y=trees\$Volume and the 31x3 matrix X=cbind(rep(1,31),trees\$Girth,trees\$Height) as input and return estimates of $\hat{\pmb{\beta}}$, the residual standard error S and the standard errors of each of the $\hat{\pmb{\beta}}$'s. Check your output against the corresponding results from the summary(lm()) output in (a).
- Q5. Here is an algorithm to compute the QR factorisation of nxp matrix A with p<n into an nxp orthogonal matrix Q and a pxp upper triangular matrix R. |v| is the Euclidean norm of vector v, the square root of the sum of the squares of the elements of v.
- Step 1: Create nxp matrix Q of NA's and pxp matrix R of NA's.
- Step 2: Set Q[,1]=A[,1]/|A[,1]| and R[1,1]=|A[,1]|
- Step 3: If p=1 then we are done; return Q and R.
- Step 4: Otherwise (if p>1)

Step 4.1: set
$$R[1,2:p] = Q[,1]^T A[,2:p]$$
 and $R[2:p,1] = O_{(p-1)\times 1}$
Step 4.2: set $A' = A[,2:p] - Q[,1]R[1,2:p]$.

Notice that Q[,1]R[1,2:p] is an outer product of an n component column vector and a (p-1) component row vector so A' is a new nx(p-1) matrix. Either make use the outer() command or, if you use %*%, be careful to use drop=F in forming these subset matrices.

- Step 4.3: compute the QR factorisation of A' (A'=Q'R' say). Step 4.4: set Q[,2:p] = Q' and R[2:p,2:p]=R' and return Q and R.
- (a) Implement this algorithm as a recursive function in R. Your function should take as input an nxp matrix A and return two matrices Q and R in a list. State briefly how you checked your function was correct.
- (b) Using your QR function, and the R backsolve() command, give a least squares solution to the over-determined system $X\hat{\beta}=y$ where X and y take their values from the trees data in question 5.