Part A Simulation and Statistical Programming Hilary 2014

Problem Sheet 4, due Wednesday 5pm Week 8.

Please email solutions in a single well-commented R-script to

andreas.anastasiou@jesus.ox.ac.uk

Q1. Here is an algorithm converting a non-negative number $0<x<1$ to binary.

Let b be the binary representation of x. If x is zero or one then set $b=x$.

 Otherwise compute the first j binary places as follows. Let $i=1$ and $y=2 x$. If y is greater than or equal one set $b[i]=1$ and $x=y-1$, and otherwise set $b[i]=0$ and $x=y$. If x is now zero then stop (as there are no more non zero places) and otherwise increase i by one and repeat until $\mathrm{i}=\mathrm{j}$ and $\mathrm{b}[\mathrm{j}]$ is evaluated.(a) Write an R function implementing the algorithm you wrote down in (a). Your function should take as input a non-negative fraction x between 0 and 1 and return the corresponding binary representation, accurate to 56 binary places. Represent the binary number as a vector, so for example decimal 0.125 becomes $\mathrm{c}(0,0,1)$ in binary.
(b) At what binary place do R's numerical values for 0.3 and $0.1+0.1+0.1$ differ?

Q2. Quick sort is a method for sorting a vector of numbers. A vector $x=C(x 1, x 2, \ldots, x n)$ is given. The function $s=q s o r t(x)$ returns a vector s of the same length as x with the entries of x given in numerically increasing order.

The algorithm works as follows. If the input vector x is empty ($x=C()$, so $n=0$), or has length $n=1$, the function returns $s=x$. Otherwise, pick a pivot (for example $\mathrm{x}[1])$. Split the vector into entries smaller than the pivot $\mathrm{x}[1]$, say $\mathrm{y}=$ (x [i]: $x[i]<x[1], i=2 \ldots n)$ and greater than or equal $x[1]$, say $z=(x[i]$: $x[i]>=x[1], i=2 \ldots n)$. Call qsort () to sort the (possibly empty) vectors y and z, and return $s=(q s o r t(y), x[1]$, qsort (z)).
(a) Plan and write a recursive R function implementing Quick sort.
(b) Show that the runtime of Quick sort (measured in comparions) is $O\left(n^{\wedge} 2\right)$ for the worst case input.

Q3. Consider a sequence of observations x_{1}, \ldots, x_{n}. Let μ_{i} and σ_{i}^{2} denote the mean and sample variance of the first i observations $x_{1}, \ldots, x_{i}, i \leq n$. How many operations (additions/subtractions or multiplications/divisions) are needed to calculate the sequence of means μ_{1}, \ldots, μ_{n}, if each mean is calculated separately?
(a) Derive an expression for μ_{i+1} in terms of μ_{i} and x_{i+1} and write an R function that calculates μ_{1}, \ldots, μ_{n} using this sequential formula. How many operations will this function use?
(b) Now consider the sequence of sample variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$. Calculate the number of operations needed to calculate this sequence by evaluating each variance separately, and using a sequential method.

Q4. Consider the normal linear model $Y=X \beta+\varepsilon$ where Y is a vector of n observations, X is an nxp matrix with each column containing a different explanatory variable and ε is vector of n independent normal random errors with mean zero and unknown variance σ^{2}. The maximum likelihood estimator $\hat{\beta}$ for β is $\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y$. The sample variance S^{2} is $S^{2}=\frac{1}{n-1}(X \hat{\beta}-Y)^{T}(X \hat{\beta}-Y)$. The standard error for $\hat{\beta}_{i}$ is se $\left(\hat{\beta}_{i}\right)=S \sqrt{\left[\left(X^{T} X\right)^{-1}\right]_{i i}}$.
(a) The trees data give Girth, Height and Volume measurements for 31 trees. Fit the normal linear model $y=\beta_{1}+x_{\text {girth }} \beta_{2}+x_{\text {height }} \beta_{3}+\varepsilon$ using data (trees) and summary (lm(Volume~Girth+Height, data=trees)) and briefly interpret the output.
(b) Write a function of your own (using solve() or your solution to Q6, not lm()) to fit a normal linear model. Your function should take the 31×1 vector

$\mathrm{X}=\mathrm{cbind}(\mathrm{rep}(1,31)$, trees\$Girth, trees\$Height) as input and return estimates of $\hat{\beta}$, the residual standard error S and the standard errors of each of the $\hat{\beta}$'s. Check your output against the corresponding results from the summary (lm()) output in (a).

Q5. Here is an algorithm to compute the QR factorisation of nxp matrix A with $\mathrm{p}<$ n into an nxp orthogonal matrix Q and a pxp upper triangular matrix $\mathrm{R} .|\mathrm{v}|$ is the Euclidean norm of vector v, the square root of the sum of the squares of the elements of v .

Step 1: Create nxp matrix Q of NA's and pxp matrix R of NA's.
Step 2: Set $Q[, 1]=A[, 1] /|A[, 1]|$ and $R[1,1]=|A[, 1]|$
Step 3: If $p=1$ then we are done; return Q and R.
Step 4: Otherwise (if $\mathrm{p}>1$)
Step 4.1: set $R[1,2: p]=Q[, 1]^{\top} A[, 2: p]$ and $R[2: p, 1]=0_{(p-1) \times 1}$
Step 4.2: set $A^{\prime}=A[, 2: p]-Q[, 1] R[1,2: p]$.
Notice that $\mathrm{Q}[, 1] \mathrm{R}[1,2: p]$ is an outer product of an n component column vector and a ($p-1$) component row vector so A^{\prime} is a new $n x(p-1)$ matrix. Either make use the outer() command or, if you use $\% * \%$, be careful to use drop $=F$ in forming these subset matrices.

Step 4.3: compute the QR factorisation of $A^{\prime}\left(A^{\prime}=Q^{\prime} R^{\prime}\right.$ say $)$.
Step 4.4: set $Q[, 2: p]=Q^{\prime}$ and $R[2: p, 2: p]=R^{\prime}$ and return Q and R.
(a) Implement this algorithm as a recursive function in R. Your function should take as input an nxp matrix A and return two matrices Q and R in a list. State briefly how you checked your function was correct.
(b) Using your $Q R$ function, and the R backsolve() command, give a least squares solution to the over-determined system $\mathrm{X} \hat{\beta}=\mathrm{y}$ where X and y take their values from the trees data in question 5.

