Part A Simulation and Statistical Programming Hilary 2014 Problem Sheet 3, due 9am Monday week 7 at SPR1.

1. (a) Give a Metropolis-Hastings algorithm to sample according to the Gamma probability density function,

$$
\pi(x) \propto x^{\alpha-1} \exp (-\beta x), \quad x>0
$$

with parameters $\alpha, \beta>0$. Use the proposal distribution $Y \sim \operatorname{Exp}(\beta)$.
(b) Write an R function implementing your MCMC algorithm. Your function should take as input values for α and β and a number n of steps and return as output a realization $X_{1}, X_{2}, \ldots, X_{n}$ of a Markov chain targeting $\pi(x)$. State briefly how you checked your code.
2. MCMC for Bayesian inference (first two parts were an exam Q in 2009)
(a) Give a Metropolis-Hastings Markov chain Monte Carlo algorithm simulating $X \sim \operatorname{Binomial}(n, r)$ for n trials and success probability r.
(b) Suppose the success probability for X is random, with $\operatorname{Pr}(R=r)=p(r)$ given by

$$
p(r)= \begin{cases}r & \text { for } r \in\{1 / 2,1 / 4,1 / 8, \ldots\}, \text { and } \\ 0 & \text { for } r \text { otherwise }\end{cases}
$$

An observed value $X=x$ of the Binomial variable in part (a) is generated by simulating $R \sim p$ to get $R=r^{*}$ say, and then $X \sim \operatorname{Binomial}\left(n, r^{*}\right)$ as before. Specify a Metropolis-Hastings Markov chain Monte Carlo algorithm simulating a Markov chain, $\left\{R_{t}\right\}_{t=0,1,2, \ldots}$ with equilibrium probability mass function $R_{t} \xrightarrow{D} p(r \mid x)$ where

$$
p(r \mid x) \propto \pi(x \mid r) p(r)
$$

is called the posterior distribution for r given data x.
(c) Write an R function implementing your MH MCMC algorithm with target distribution $p(r \mid x)$. Suppose $n=10$ and we observe $x=0$. Run your MCMC and estimate the mode of $p(r \mid x)$ over values of r.
3. (The random-scan Gibbs sampler) Suppose $p(x)$ is the pmf of some multivariate random variable $X \in \mathbb{Z}^{m}$, so $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$. Let

$$
x_{-i}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m}\right)
$$

be the vector of components with x_{i} omitted. Consider a Metropolis-Hastings algorithm simulating a Markov chain $\left\{X^{(t)}\right\}_{t=0}^{\infty}$, with $X^{(t)} \rightarrow p$. Here is an update scheme: suppose $X^{(t)}=x$ and we propose a candidate y by choosing i at random from $1,2, \ldots, m$, simulating y_{i} from the conditional distribution $X_{i} \mid X_{-i}=x_{-i}$ and setting

$$
y=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{m}\right)
$$

(a) Show that if y and x differ at a single index i then the pmf for $Y=y \mid X=x$ is

$$
q(y \mid x)=(1 / m) p\left(y_{i} \mid x_{-i}\right) .
$$

Give a formula for $p\left(y_{i} \mid x_{-i}\right)$ in terms of $p(y)$.
(b) Show that the acceptance probability $\alpha(y \mid x)$ is equal to one.
(c) Give a Gibbs sampler for the multinomial probability mass function,

$$
\pi(y, z)=\frac{n!}{y!z!(n-y-z)!} p^{y} q^{z}(1-p-q)^{n-y-z}, \quad 0 \leq y+z \leq n
$$

with parameters n, p, q, where $p, q \geq 0, p+q \leq 1$ and $n \in\{1,2,3, \ldots\}$. [Hint: show that $Z \mid Y=y \sim \operatorname{Binomial}(n-y, q /(1-p))]$

