
Part A Simulation and Statistical Programming Hilary 2014

Problem Sheet 2, due Wednesday 5pm Week 5 at SPR1

1. The random variable X has probability mass function

p(x; s) =
1

ζ(s)

1

xs
, for x = 1, 2, 3, ....

(a) The normalising constant ζ(s) is hard to calculate, However, when s = 2 we do have ζ(2) = π2/6.
Give an algorithm to simulate Y ∼ p(y; 2) by inversion.

(b) Implement your algorithm as an R function. Your function should take as input an integer n > 0
and return a vector of n iid realisations of Y ∼ p(y; 2). State briefly how you checked your code.

(c) Give a rejection algorithm simulating X ∼ p(x) = p(x; s) for s > 2 using draws from Y ∼ q(y)
with q(y) = p(y; 2).

(d) Compute the expected number of simulations of Y ∼ q for each simulated X ∼ p in the previous
part question, giving your answer in terms of ζ(s).

(e) Implement your algorithm as an R function. Your function should take as input s and return as
output X ∼ p(x; s) and the number of trials N it took to simulate X .

2. Suppose X ∼ N(0, σ2) and we want to estimate µφ = E(φ(X)) for some function φ(x) known to have
finite mean and variance. Suppose we have samples Y = (Y1, ..., Yn) with Yi ∼ N(0, 1), i = 1, 2, ..., n
iid. Here are two estimators for µφ given in terms of Y :

θ̂1,n =
1

n

n∑

i=1

φ(σYi) θ̂2,n =
1

nσ

n∑

i=1

e−Y 2

i
(1/2σ2

−1/2)φ(Yi).

(a) Show that θ̂1,n and θ̂2,n are unbiased and give their variances in terms of expectations of φ etc.

(b) What range of values must σ be in for θ̂2,n to have finite variance? Can you give a weaker
condition if it is known that

∫
∞

−∞
φ2 (x) dx < ∞?

(c) Why might we prefer θ̂2,n to θ̂1,n, for some values of σ2 and functions φ? (Hint: consider estimating
P(X > 1) with σ ≪ 1).

3. We are interested in performing inference for the parameters of internet traffic model.

(a) The arrival rate Λ for packets at an internet switch has a log-normal distribution LogNormal(µ, σ)
with parameters µ and σ. The LogNormal(µ, σ) probability density is

pΛ(λ; µ, σ) =
1

λ
√

2πσ2
exp

(
−(log(λ) − µ)2/2σ2

)
,

Show that if V ∼ N(µ, σ2) and we set W = exp(V ) then W ∼ LogNormal(µ, σ).

(b) Given an arrival rate Λ = λ, the number N of packets which actually arrive has a Poisson
distribution, N ∼ Poisson(λ). Suppose we observe N = n. Show that the likelihood L(µ, σ; n) for
µ and σ is

L(µ, σ; n) ∝ E(Λn exp(−Λ)|µ, σ).

(c) Give an algorithm simulating Λ ∼ LogNormal(µ, σ) using Y ∼ N(0, 1) as a base distribution, and
explain how you could use simulated Λ-values to estimate L(µ, σ; n) by simulating values for Λ.

(d) Suppose now we have m iid samples

Λ(j) ∼ LogNormal(µ, σ), j = 1, 2, ..., m

for one pair of (µ,σ)-values. Give an importance sampling estimator for L(µ′, σ′; n) at new pa-
rameter values (µ′, σ′) 6= (µ, σ), in terms of the Λ(j)’s.

(e) For what range of µ′, σ′ values can the Λ(j)-realisation be safely ’recycled’ in this way?


