
Part A Statistical programming HT13

Lecturer: Geoff Nicholls

University of Oxford

Notes and Problem sheets are available at

www.stats.ox.ac.uk\ ∼nicholls\PartAStatisticalProgramming

Course structure

• 6 2hr sessions in HT weeks 3-8

• Lectures 1 hour + practical 1 hour

• 2 problem sheets and 2 classes 4-5pm Weds week 8 HT13

and Weds week 1 TT13. Sign up today.

• Exam : 1 question on AS1 and 1 question in AS2.

• Equivalent to an 8hr lecture course.

What is Statistical Programming?

There are three elements: statistics, algorithms and carrying out

statistical analysis on a computer.

In a typical study we begin by loading the data into the computer,

and making an exploratory analysis of the data (EDA).

We look at the raw numbers, and visualize them by plotting

graphs that reveal patterns in the data. We may have a model

we wish to fit to the data, and a hypothesis we wish to test.

Statistics tells us what objects we need to calculate in order to

make the fit and carry out the test.

An algorithm tells us how to calculate those objects. It is a

sequence of operations that carry out a given task. An algorithm

is a mathematical object, with properties we can prove. We give

an (informally stated) algorithm to convert a decimal to binary

later in this lecture.

Finally we go back to the computer and implement the algorithm

(or use an implementation someone else has written). This is

a computer programme and it should carry out the calculations

dictated by the algorithm. Two correct implementations of the

same algorithm can differ, for example in efficiency and in the

range of cases they handle correctly.

What is R

R is an open-source package for Statistical Computing

It is freely available - http://cran.r-project.org/

It is now widely by Statisticians in Universities and Industry

• The BS1 course in Part B will use R extensively

• The Part A Statistics and Simulation courses use R to illus-

trate some elements of the course.

R is actively supported and updated and has many add-on pack-

ages that specialize in specific applications.

It can be extended to do new things - functions, packages

Getting started

Begin by selecting Start > all programmes > R The R Graph-

ical User Interface RGui opens, with an internal window, the R
Console, into which you type commands.

You will often want to keep a record of your work from an R

session. You can do this by starting an R script: File > New
Script. This opens a new file in an R editor window.

You can type R commands in the script, which can then be

selected (using the mouse) and evaluated (using Ctrl-R) in the

R Console.

You also make notes in the script and save the script for the

future File > Save (you need to select the R editor window for

the script you want to save using the mouse).

Arithmetic Operators

• Arithmetic operators: +, -, /, *, ^ where x^y is xy.

• %% for modulo reduction, %/% for integer division, %*% for

matrix multiplication

Example

• Type 2 + 3 <return>

• Type 6 * 9 + 3 / 5 <return>

• Type 3^4 <return>

• Type 5^(-5.6+3) <return>

• Type 143 %% 6 <return>

Mathematical functions

Many mathematical functions are available e.g.

exp(x), log(x), log10(x), sqrt(x)

sin(x), cos(x), tan(x)

asin(x), acos(x), atan(x)

sinh(x), cosh(x), tanh(x)

asinh(x), acosh(x), atanh(x)

abs(x), min(x), max(x)

• Type exp(-4 * 4 / 2) / sqrt(2 * pi)<return>

• Type log(4)<return>

Named storage Often we will want to do a calculation and save

the result. Assignment can be done using the = or <-.

• Type x1 = 2 + 3 <return> (stores result in ‘object’ called

x1)

• or type x2 <- 9*exp(-3) <return> (stores result in ‘ob-

ject’ called x2)

• To see the results of these assignments type the names of

the objects into the terminal.

• We can then use these objects in new calculations.

x1 + x2<return>

Vectors and sequences Vectors or sequences of numbers can also

be created, stored and manipulated

• They can be created manually

x1 = c(0.1, 0.2, 0.3, 0.4, 0.5) <return>

Example

if x = (1, 2, 3, 4) and y = (5, 6), then

x + 3 = (4, 5, 6, 7)

x + y = (6, 8, 8, 10)

Logical Operators

• == (equal), != (not equal), >, <, >=, <=

Example

3 < 4 <return>

• ! (not), | (or), || (or), & (and) && (and)

• Note difference between |,& and ||,&&: former work on

vectors, latter (a) only consider first element and (b) stop as

soon as the outcome is known.

Example (a)

if x = (TRUE, FALSE, TRUE)

and y = (FALSE, TRUE, TRUE)

x | y = (TRUE, TRUE, TRUE), x || y = (TRUE), then

x & y = (FALSE, FALSE, TRUE), x && y = (FALSE)

Example (b)

If b=2 and we execute (a=1)<0 & (b=-1)<0 then b=-1 but if

b=2 and we execute (a=1)<0 && (b=-1)<0 then b=2 (still). In

the first case we have a sideffect (b changes value). It is usually

a bad idea to allow them in your code so we would not typically

include an assignment b=-1 in a test (b=-1)<0 irrespective of

whether we used & or &&. The && form saves time evaluating

later tests when the result is already known.

Error messages

• The R commands you enter will sometimes contain errors.

• R will either report an Error message or prompt you to com-

plete the command.

Example

Incomplete brackets i.e. (4+8<return>
prints a + which means you need to enter the remaining brackets.

Example

Too many brackets i.e. (4+8))<return>
results in an error message.

Example

Using the wrong type of brackets i.e. exp{4}<return>
results in an error message.

Computer representation of numbers

• On a computer numbers are stored in binary rather than

decimal.

• Consider the number 1197.625.

In decimal we write

103 102 101 100 10−1 10−2 10−3

1 1 9 7 6 2 5

In binary, the number is

210 29 28 27 26 25 24 23 22 21 20 2−1 2−2 2−3

1 0 0 1 0 1 0 1 1 0 1 1 0 1

To convert from a base-10 integer to base-2 (binary), the num-

ber is divided by two, and the remainder is the least-significant

bit. The (integer) result is again divided by two, its remainder

is the next most significant bit. This process repeats until the

result of further division becomes zero.

1197 = 2 ∗ 598 + 1 → 1

598 = 2 ∗ 299 + 0 → 0

299 = 2 ∗ 149 + 1 → 1

149 = 2 ∗ 74 + 1 → 1

74 = 2 ∗ 37 + 0 → 0

37 = 2 ∗ 18 + 1 → 1

18 = 2 ∗ 9 + 0 → 0

9 = 2 ∗ 4 + 1 → 1

4 = 2 ∗ 2 + 0 → 0

2 = 2 ∗ 1 + 0 → 0

1 = 2 ∗ 0 + 1 → 1 → 10010101101

To convert from a base-10 fraction to base-2 (binary), the num-

ber is multiplied by two, if the result is > 1 the most-significant

bit is 1 otherwise 0. The (fractional) remainder is again multi-

plied by two and compared to 1. This process repeats until the

remainder is zero.

0.625 ∗ 2 = 1.25 → 1

0.25 ∗ 2 = 0.5 → 0

0.5 ∗ 2 = 1 → 1 → .101

So, 1197.62510 = 10010101101.1012

• In decimals, some fractions are recurring. The same can be

true in binary. Consider 0.8

0.8 ∗ 2 = 1.6 → 1

0.6 ∗ 2 = 1.2 → 1

0.2 ∗ 2 = 0.4 → 0

0.4 ∗ 2 = 0.8 → 0

etc

So, 0.810 = 0.11002

• Fractions in binary only terminate if the denominator has 2

as the only prime factor.

• Modern computers use 64 bits to represent numbers so some

numbers (like 0.8) must be approximated.

• Care is needed when testing whether 2 numbers are the same:

– x <- seq(0, 0.5, 0.1) ##generate a sequence from

0 to 0.5 in steps of 0.1

– type x ##Look at x

– is x equal to (0, 0.1, 0.2, 0.3, 0.4, 0.5)?

– To find out, type

x==c(0, 0.1, 0.2, 0.3, 0.4, 0.5)

[1] TRUE TRUE TRUE FALSE TRUE TRUE

Rounding problems Tiny inaccuracies can accumulate:

• the sample variance of a vector x is often calculated as

var(x) = (
∑

x2 − nx̄2)/(n − 1)
or, in R

(sum(x^2) - n * mean(x)^2) / (n - 1)

• Try it with x <- seq(1:100)

• Now with x <- seq(1:100) + 10000000000

• compare with var(x)

• Can you see why there was a problem?

Moral ”Worry, but, if you use R, don’t worry too much, because

R has worried for you.”

Try it yourself

Begin by selecting Start > all programmes > R

The R Graphical User Interface RGui opens, with an internal

window, the R Console, into which you type commands.

You can open the lecture script: File > Open Script. The

script you want is L1.R on the H: drive.

After 5 minutes we will continue with the lecture.

Basic Types of Variables Variables are the equivalent of mem-

ories in your calculator. But you can have unlimited (almost!)

quantities of them and they have names of your choosing. And

different types. The basic types are

• integer

• double

• character

• logical: these take one of the two values TRUE or FALSE (or

NA, see later)

• factor or categorical

More Specialised Classes

As well as the basic types of variables, R recognises many more

complicated objects such as

• vectors, matrices, arrays: groups of objects all of the same

type. The practical will show you how to use these.

• lists of other objects which may be of different types

• Specialised objects such as Linear Model fits

Special values of objects

There are some types of data which need to be treated specially

in calculations:

• NA The value NA is given to any data which R knows to be

missing. This is not a character string, so a character string

with value ‘NA’ will be treated differently from one with the

value NA.

• Inf The result of e.g. dividing any non-zero number by zero

• NaN The result of e.g. attempting to find the logarithm of a

negative number.

Factors: Factors are variables which can only take one of a finite

set of discrete values. They naturally occur as vectors, and can

be

• numeric e.g. drug doses with values 1mg, 2mg, 5 mg

• or character e.g. voting intention with values Liberal Demo-

crat, Conservative, Labour, Other

Although factors are stored as numbers, along with the label

corresponding to each number, they cannot be treated as nu-

meric. Would it make sense to ask R to calculate mean(voting
intention)?

A more useful function for factors is table which will count how

many of each value occur in the vector.

More about Factors

• Ordered Factors

Some factor variables have a natural ordering. Drug doses

do, but voting intentions usually do not. R will treat the

two types differently. It is important not to allow R to treat

non-ordered factors as ordered ones, since the results could

be meaningless.

• Creating factors

Use cut to create factor variables from continuous ones:

Example

age <- runif(100) * 50

table(cut(age, c(0, 10, 20, 30, 40, 50)))

(0, 10] (10, 20] (20, 30] (30, 40] (40, 50]

17 19 19 24 21}

Data frames

• For storing data which is a collection of observations (rows)

of a set of variables (columns). E.g. book titles and prices.

• Similar to a matrix but variables in different columns can

have different types.

• Always the same number of entries in each row, although

some may be missing (NA).

• Can be formed by reading in data e.g. from a spreadsheet,

or constructed using the function data.frame.

Chick weights data frame

weight feed

1 179 horsebean

2 160 horsebean

3 136 horsebean

4 227 horsebean

.

.

.

Lists A data frame is a kind of list, which is a vector of objects of

possibly different types. For example, an employee record might

be created by

Empl <- list(employee = "Anna", spouse = "Fred", children

= 3, child.ages = c(4, 7, 9))

Components are always numbered and may be referred to by

number. e.g. Empl[[2]]. If they are named, can also be re-

ferred to by name using the $ operator eg. Empl$spouse

Note that Empl[4] is a list of length 1, while Empl[[4]] is a

numeric vector of length 3.

Keeping track of objects

• Once you have created some objects, how do you remind

yourself what you called them?

• Use a function such as ls() or str().

• ls() lists the names of all the objects in your workspace.

• str(Empl) gives a little information about the object Empl.

str(Empl)
List of 4
$ employee : chr "Anna"
$ spouse : chr "Fred"
$ children : num 3
$ child.ages : num [1:3] 4 7 9

More functions paste

• paste adds together character vectors: paste(c(1, 2),

c(’x’, ’y’, ’z’)) is a character vector of length 3

[1] "1 x" "2 y" "1 z"

Notice the recycling of the first argument.

• The pieces of the result can be joined together using the

argument collapse:

paste(c(1, 2), c(’x’, ’y’, ’z’), collapse=’ ’) is

a character vector of length 1,

"1 x 2 y 1 z"

Yet more functions sort,table

• sort(x) sorts the vector x into increasing order

• sort(x, decreasing=TRUE) sorts the vector x into de-

creasing order

• table(x) creates a table showing the count of elements

equal to each value. Most useful where x is a vector of

factors or integers

• e.g. table(rpois(20, 5)) gives

2 3 4 5 6 7 8
3 2 2 6 3 3 1

Installing R on your own machine

• Visit CRAN at http://cran.r-project.org/

• Find the appropriate binary
– Windows:

http://cran.r-project.org/bin/windows/base/release.htm

– Mac: select as appropriate

– Linux: select as appropriate.

• After installation, create a shortcut which starts in your folder

(using right-click/properties)

• Update packages via the packages menu or using update.packages()

Getting Help

• help(command) or ?command if you know the command

name

• Type ??variance or help.search("variance") for a sub-

ject

• ?‘&&‘ for operators or words such as if

• help.start() for R online documentation

• Help menu in Windows gives still more options

Books

In addition to the extensive documentation and help system that

is included in R there are three main books that we recommend.

‘A First Course in Statistical Programming with R’ by W. John

Braun and Duncan Murdoch, ISBN 0-521-69424-8

‘Introductory Statistics with R’ by Peter Dalgaard, ISBN 0-387-

95475-9

- a very good introduction to R that includes many biostatistical

examples and covers most of the basic statistics covered in this

course.

‘Modern Applied Statistics with S’ by Bill Venables and Brian

Ripley, ISBN 0- 387-95457-0

- a comprehensive text that details the S-PLUS and R imple-

mentation of many statistical methods using real datasets.

Practical

• Practical is a mixture of getting you to enter commands and

solving problems

• Always use the same computer as files will be stored on it

and you may need them from week to week. So note down

the number of the computer you have used.

• Use a script and save the script to the H: drive. Save it with

a file name that includes your name.

• May want to bring a memory stick to make a copy of your

script or email the script to yourself.

• Web browsing, facebook etc are banned from practical ses-

sions.

• To quit R type q(). Then select No when asked if you want

to save the session.

Part A Statistical programming HT13

Geoff Nicholls

Lecture 2: Handling Data

Overview

1. Reading data.

2. Attaching data frames to the search path.

3. Further operations on data: apply() and subsetting.

4. Plotting data.

(a) Histograms and overlays.

(b) Boxplots and the R Formula notation.

(c) Barplots

(d) Point plots.

Getting Data into R

Data come to us in many different formats. R has functions to

read them.

hellung.txt is text file of data from an experiment on the

growth of Tetrahymena cells.

The cell concentration (conc) was set at the beginning of the

experiment and the average cell diameter (diameter) was mea-

sured for two groups of cell cultures where glucose was either

added (glucose=1) or not added (glucose=2) to the growth

medium. A theoretical model predicts diameter proportional to

the log of concentration. The effect of glucose on the cell di-

ameter is of interest.

The data are a table, with one row for each observation and a

column for each variable. The first row gives variable names.

We can use the read.table() function to read it. This table

has a header line, so we tell R to expect a header.

hd=read.table(’hellung.txt’,header=TRUE)

creates a data.frame with cases corresponding to rows and

variables to columns in the file.

How many observations are there, and what are the variable

names? dim(hd), names(hd)

Show me the first few rows, and basic properties of the variables!

head(hd),str(hd), summary(hd)

Show me the data!

#basic plotting

x=log(hd$conc); y=hd$diameter;

plot(x,y,xlab=’log(conc)’,ylab=’cell diameter’)

10 11 12 13

19
20

21
22

23
24

25
26

log(conc)

ce
ll

di
am

et
er

There are R-packages (of which

more anon) for reading special-

ized formats such as xls and im-

age formats.

The function and variable search path

When you type a function or variable name, R searches for the

object in a list called the search path.

search() shows you the databases in which R searches. The

first, ”.GlobalEnv”, is your R console workspace. The last,

”package:base” has all the basic R functions.

If you attach() a data frame to the search path, the variables

inside the data frame can be found.

For example, you must type hd$glucose to get the glucose

numbers. Following attach(hd), you can access it with just

glucose. Now search() shows hd in the path.

plot(log(conc),diameter) #an error

attach(hd)

plot(log(conc),diameter)

You can detach(’hd’) an object to remove it from the path.

You might do this if you wanted avoid a conflict with something

else with the same name. In many commands you can specify

where to look for the variables, using the data= option. This

is often easier read, and shows explicitly which data are being

used.

Data summaries Here are some useful functions.

mean(), median()

sd(), var(), cov(),cor()

range(), quantile(), summary()

min(), max(), pmin(), pmax()

which.max(), which.min()

sum(),cumsum(),cumprod()

Many of these functions have an argument na.rm which needs

to be set to TRUE in order to remove NAs from the data.

There are no NA’s in these data so here is a simple exam-

ple: If eg=c(1,2,NA,3,4) then mean(eg) gives an error but

mean(eg,na.rm=T) gives 2.5, the mean of (1, 2, 3, 4). R is forc-

ing you to be explicit about the NA-handling.

Applying functions over data, and subsetting

The apply() command is also very useful for applying functions

to all rows or all columns of an array or data frame. For example,

apply(hd,2,max) finds the maximum of each variable.

Sometimes we want to work on subsets of a data frame. Boolean

variables are converted to array indices when they appear as the

index to a vector.

For example, to compare the mean cell diameters for cells with

and without glucose we might calculate mean(diameter[glucose==1])
and mean(diameter[glucose==2])

We can create a new data frame from the subset of observations

of interest: for example, hd.g1=hd[glucose==1,] pulls out the

rows of hd that satisfy our condition, and takes all columns.

Plotting Data: Histograms

Graphical data displays provide insight to data. Think carefully

about how to display data to highlight features of interest. We

begin with simple exploratory plots.

hist(diameter,freq=FALSE) gives a histogram of the num-

bers in the variable diameter. The y-axis shows counts.

hist(diameter,freq=TRUE) gives a histogram with area scaled

to one, like a probability density.

par(mfrow = c(1,2)); hist(diameter); hist(conc) puts

two entire plots in one window, in 1 row and 2 columns.

You may need to adjust the number of histogram bins. The

default ’Sturges’ rule gives too few on large data sets. Try the

’Scott’ rule, fix the number yourself, or give a vector of bin

locations.

n = 100000; x = rnorm(n)

par(mfrow = c(2,2));

hist(x, main = "Sturges")

hist(x, breaks = "Scott", main = "Scott")

hist(x, breaks = sqrt(n),main=’sqrt(n)’)

hist(x, breaks = seq(from=-5,to=5,length.out=200),

main=’my breaks’)

Overlays

The lines(), points() and text() commands can be used to

overlay lines, points and text on an existing plot (already created

with plot() or hist()).

For example, we can overlay a density estimate (computed using

the density() function) on a histogram.

hist(diameter,freq=FALSE);

lines(density(diameter),col=2)

Here lines will recognize density() output and done some-

thing sensible.

Histogram of diameter

diameter
D

en
si

ty

20 22 24 26

0.
00

0.
05

0.
10

0.
15

0.
20

hist(diameter,freq=FALSE);

d=density(diameter)

lines(dx,dy,col=2)

has the same effect.

Boxplots and the R formula notation

These are useful for plotting a continuous variable against one

or more discrete variables.

The R formula notation is useful here. The formula

variable1~variable2

means variable1 is a response variable and depends on variable2.

For example, we expect the distribution of cell diameters to be
different depending on whether or not glucose was used.

boxplot(diameter~glucose,xlab=’glucose’,ylab=’diameter’)

1 2

19
20

21
22

23
24

25
26

glucose

di
am

et
er

lower whisker

lower quartile

median

upper quartile

upper whisker

Points beyond the outer whiskers are possible outliers.

Barplots are useful for showing the distributions of categorical

variables.

For example Oxford data anon.csv is a csv file giving (anony-

mous) FHS results from 2006-2008.

ox=read.csv("Oxford data anon.csv", header = TRUE)

For each (unnamed) student the file gives Year, College, Subject

and Result.

(ox.tab=table(ox$Result,ox$College)) gives a table of counts

by result and college. The first row ox.tab[1,] is the count

of firsts by college, so barplot(ox.tab[1,],cex.names=0.5) simply

plots raw counts.

barplot(ox.tab,cex.names=0.5) plots the counts in each col-

umn as a bar, made up of the counts in each class.

BAL CHR EXE HER KEB LIN MAN NEW PEM SOM STC STH STP UNI WOR

0
10

0
20

0
30

0
40

0
50

0
60

0

Scatter plots

We started with an elementary plot. By varying color (col)
and point character pch from point to point, you can highlight

different subsets of data within the plot. For example

plot(log(conc), diameter, col=glucose, pch=glucose)

The color and shape of each point is decided by its glucose value.

We can overlay a line using the abline(intercept,slope)
command, which simply takes the intercept and slope.

abline(37.806,1.264)
abline(36.327,1.264,col=2)

We can plot or overlay a function using curve()

curve(37.806-1.264*x, from=8 , to=15, add=T)

curve(36.327-1.264*x, from=8 , to=15, add=T, col=2)

10 11 12 13

19
20

21
22

23
24

25
26

log(conc)

di
am

et
er

Part A Statistical programming HT13

Geoff Nicholls

Lecture 3: Functions and flow control

Overview for lecture 3

1. R functions, function arguments and scoping

2. Flow control with for(), if()-else and while().

3. Examples (Sieve of Eratosthenes and Newton’s method).

Functions: what and why

What: functions take input, perform operations on the input

and return output. Functions help us break down a big problem

into modules. We can get each function working accurately and

build up a working system. Functions help us avoid repeating

the same sequence of commands in lots of different places.

The general definition of a function is :

MyFunction = function(arguments) { statements }

The arguments can defined with or without defaults. When the

function is called the arguments are passed to the statements.

A function computing the p-norm

n∑

i=1

|xi|
p

1/p

of x ∈ Rn:

g<-function(x,p=2) {

#my pnorm function

y=abs(x)

z=sum(y^p)

return(z^(1/p))

}

g(c(3,4)) returns 5 (no p set so default p=2 used).

g(c(3,4),1) or g(c(3,4),p=1) returns 7.

A function returns the value of the last statement evaluated so

the return() command is often omitted.

Variable scope

The scope of a variable tells us where the variable is visible.

Generally speaking you want a variable to be visible only where

it is needed, to avoid clashes with other variables that have the

same name.

In R, the variables in a function are local to the function. The

environment calling the function (for example, the R-console

workspace, or another function) cant see the variables inside the

function (only the return values). On the other hand the called

function can see the variables in the environment that called it

(the parent environment).

For example, if we define a function f() in the R-console

f<-function(x) {

a=b*x^2

return(a)

}

set a=2, b=1 and call f(5) the function returns 25.

The function found b in the workspace that called it.

In the console a is still 2 because the function created its own

local variable a.

for loops

A for-loop repeats some commands a fixed number of times.

Example: Plan and write a function computing the first n terms

in the Fibonacci sequence 1 1 2 3 5 8 13 21

We will build up the sequence in a vector x = (x1, x2, ..., xn). In

order to calculate the ith entry we will add xi−1 and xi−2, the

previous two elements of the vector, and write the result into

the ith entry in x.

fibonacci = function(n) {

#evalute first n terms in Fibonacci sequence

x = numeric(n)

x[1:2] = 1

for(i in 3:n) {x[i] = x[i-2] + x[i-1]}

return(x)

}

The general form is

for (variable in sequence) { statements }

if and if else statements

The if() statement controls which statements are executed.

if (x > 2) {
y = 2 * x

} else {
y = 3 * x

}

sets y=3 when x = 1 and sets y=8 when x=4.

Can have a simple if() without the else. The following gives

a warning when x=1 and y=3 (so z=NaN)

z=(x-1)/(y-3)
if (is.nan(z)) warning(’z is not a number’)

The while() loop

Repeat a set of statements until a condition is satisfied.

Write an R-function to simulate a standard normal random vari-

able conditioned to be greater than a for given real a.

Z<-function(a) {
z=rnorm(1) #rnorm(1) simulates 1 N(0,1) rv
while (z<a) {

z=rnorm(1)
}
z

}

The code repeats the simulation until the condition is satisfied.

Now Z(2) simulates Z|Z > 2 for Z ∼ N(0, 1).

The Newton method for root finding

Suppose we wish to find a root of an algebraic equation

f(x) = 0.

If f(x) has a derivative f ′(x), then the following iteration will in

general converge to a root if started close enough to the root.

x0 = initial guess

xn = xn−1 −
f(xn−1)

f ′(xn−1)

The algorithm runs until |f(xn)| < ǫ.
The idea is based on the Taylor approximation

f(xn) ≈ f(xn−1) + (xn − xn−1)f
′(xn−1)

NOTE : this method may fail to converge.

Newton-Raphson Example Suppose f(x) = x3 + 2x2 − 7.

f <- function(x) {x^3 + 2*x^2 - 7}
f.prime <- function(x) {3*x^2 + 4*x}

nr <- function(x, tol = 0.001) {
#Newton-Raphson iteration for f
while(abs(f(x)) > tol) {

x = x - (f(x) / f.prime(x))
}
return(x)

}

The return value for nr(4) is approx. 1.428820. Compare

1.428817702 (Maple, numerical evaluation of exact solution to

cubic).

Example (first iteration shown starting at x0 = 4).

−4 −2 0 2 4

−
50

0
50

10
0

15
0

f(x)=x^3 + 2*x^2 − 7

x

f (
x)

Part A Statistical programming HT13

Geoff Nicholls

Lecture 4: Recursion, Debugging, Efficiency

(with the sorting problem used as a running example).

Overview for lecture 4

1. Recursive evaluation

2. Sorting Algorithms

3. Runtime analysis

4. Debugging

Recursion

Recursive programmes call themselves.

Example: Plan and write a recursive function for f(x) = x!.

f(1) = 1, f(x) = xf(x − 1) for x > 1.

Our factorial function returns x! = 1 on input x = 1 and oth-

erwise calls itself to evaluate (x − 1)! and multiplies this by x.

factorial<-function(x) {

if (x==1) return(1)

if (x>1) return(x*factorial(x-1))

stop(’x must be a positive integer’)

}

Each function in the nested sequence of calls to factorial()

has its own variable environment with its own distinct version of

the local variable x.

Recursive algorithms are often shorter and clearer than the cor-

responding implementation via for or while. However, they

may be demanding of memory, if each level of recursion makes

its own copy of local variables.

Sorting algorithms

Let f(x) be a function which sorts the numeric input vector

x = (x1, x2, ..., xn) into numerically increasing order f(x) =
(x(1), x(2), ..., x(n)). Several algorithms do this, with varying ef-

ficiency.

Simple sort: find the smallest element x(1). Suppose it is the

kth element. Remove the kth element from the list, so y =
(x1, ..., xk−1, xk+1, ..., xn). Return the vector (x(1), f(y)).

Bubble sort: sweep through the vector, swapping xi and xi+1 if

xi > xi+1. Repeat this till the vector is in order. After i sweeps

the last i elements x(n−i), ..., x(n) must be in their correct places

so the algorithm terminates after n sweeps at most.

Runtime analysis

We measure the runtime in units of operations. This might

be the number of additions, subtractions, divisions and multipli-

cations. For a sorting algorithm we can count the number of

comparisons.

We typically give the asymptotic run time - as a function of the

input size, for large values of the input. We give the order of the

function - quadratic, cubic etc. More efficient algorithms have

(asymptotically at least) smaller run times.

We can give the worst case (for any input) or the average case

(usually more interesting but harder to calculate).

Here is an algorithm to find the smallest entry of n > 1 numbers.

my.min<-function(x) {
a=x[1]
for (k in 2:length(x)) {

if (x[k]<a) a<-x[k]
}
a

}

Let g(x) be the number of comparisons. Clearly g(x) = n − 1
independent of x, so the runtime is O(n).

Look at Simple sort. It repeatedly finds the smallest entry in

a shrinking vector, of length n, n − 1,...,1. Its runtime will be

n − 1 + (n − 2) + ... + 1 comparisons, irrespective of the input,

so it is an O(n2) sorting algorithm.

Merge sort

Split x into two halves y = (x1, ..., x⌊n/2⌋) and z = (x⌊n/2⌋+1, ..., xn).

Sort the two halves using Merge sort so y′ = f(y) and z′ = f(z).
Interleave the two sorted vectors y′ and z′ to form their sorted

union.

mergesort = function(x) {

Terminate recursion - the trivial vector is pre-sorted

split vector into 2 halves

sort two halves by calling function on each half

merge the two sorted halves

}

Merge sort

split x into two halves y = (x1, ..., x⌊n/2⌋) and z = (x⌊n/2⌋+1, ..., n).

Sort the two halves using Merge sort so y′ = f(y) and z′ = f(z).
Interleave the two sorted vectors to form their sorted union.

mergesort = function(x) {
n = length(x)
if(n < 2) { # check that vector doesnt need sorting

result = x
} else {

split vector into 2 halves
sort two halves by calling function on each half
merge the two sorted halves

}
return(result)

}

mergesort = function(x) {
n = length(x)
if(n < 2) { # check that vector doesnt need sorting

result = x
} else {

split vector into 2 halves
y = x[1:(n%/%2)]
z = x[(n%/%2 + 1):n]

sort two halves by calling function on each half
y = mergesort(y)
z = mergesort(z)

result = my.merge(y,z)
}
return(result)

}

Merge sort: auxiliary function merging sorted vectors

Build up the sorted merged vector result one element at a

time.

1) Take the smaller of y[1] and z[1],

2) remove it from its vector,

3) tack it on the end of result.

4) Repeat steps 1-3 till one of the vectors y or z is emptied.

This will be our while() condition. When this happens...

5) The remaining numbers in the surviving vector are sorted and

all larger than the numbers in result, so tack them on the end.

my.merge<-function(y,z) {

result = c()

while(length(y)>0 && length(z)>0) {

if(y[1] < z[1]) {

result = c(result, y[1])

y = y[-1]

} else {

result = c(result, z[1])

z = z[-1]

}

}

#exactly one of y and z is empty

c(result,y,z)

}

Look at Merge sort. Suppose n = 2k for simplicity. Let gk
be the number of comparisons to sort this vector. Merge sort

splits the vector into two vectors of length 2k−1. These two

sub-vectors have to be sorted, which is 2gk−1 comparisons. The

number of comparisons to merge the sorted sub-vectors is 2k−1

so

gk = 2gk−1 + 2k−1

and g1 = 0. The homogeneous solutions are gk = A2k with

particular solution k2k−1. Applying the initial condition gives

gk = (k + 1)2k−1 or g(x) = log2(2n)(n/2). We conclude that

Merge sort needs O(n log2(n)) comparisons, irrespective of the

input.

Debugging

Try to write your code so it is easy to check and maintain. We

mentioned modularity (breaking code elements up into functions,

as I did above with my.merge()) and information hiding (dont

let a function have information it doesnt need). Careful planning

and commenting help. Give variables meaningful names.

Your have just implemented an algorithm in R. It ran without

reporting errors on the first input you tried. What do you do?

Answer: assume it contains errors. Test it thoroughly using input

for which you know the correct output.

You are implementing an algorithm in R. It crashes∗. What do

you do?
∗terminates with an error message

When an error occurs R saves the list of active functions. trace-

back() prints that list. See example in L4.R.

You cant see the values of variables local to a function you called.

You could use print() or cat(sprintf()) commands to see

what values variables take inside the function.

debug() lets you see what’s going on inside a function inter-

actively. You can examine (or change!) the value of variables,

or execute any other R command, inside the function. You can

also execute a debugger command

• n - next : execute the next line of code

• c - continue : let the function continue running

• Q - quit the debugger

undebug() can be used to turn off debugging on the function.

The browser() command can also be put inside functions to

start the debugger.

Try debug(mergesort) and then mergesort(c(3,2,4,6,1,1,10)).

This (ie debug()) is like desk-checking a programme. We pre-

tend we are the computer and carry out the programme instruc-

tions by hand on a piece of paper. I usually use this as a last

resort to fix a programme.

Part A Statistical programming HT13

Geoff Nicholls

Lecture 5: Solving Linear Systems. Optimization.

Overview for lecture 5

1. R commands for matrices and vectors (reference slides)

2. Solving linear systems Ax = b.

(a) Forwards and Backwards substitution

(b) Solving Ax = b for full rank A using LU factorization

(c) Regression.

(d) Over-determined systems. Numerical stability and QR

factorization.

3. Optimization. Direct and Indirect methods.

(a) Newton Raphson. Analysis.

Solving linear systems

Suppose A is a real n × p matrix of rank p with p ≤ n, and

entries ai,j, and b is an n × 1 real vector.

Many important numerical problems reduce to

solve Ax = b for x.

If p < n, then the system is over-determined. We come back to

this case later. We will look at how the equations Ax = b may

be solved when p = n so that A−1 exists and x = A−1b.

R has a function solve(A) returning A−1 so we could compute

x=solve(A)%*%b.

We will see that this is inefficient and numerically unstable, and

find that the best method depends on the properties of A.

Forward and Backward elimination

Suppose A is lower triangular so that ai,j = 0 for i > j. Solve

Ax = b for x using forward substitution. Chop the n equations

in Ax = b into blocks

A =

(
a11 01×(n−1)
A21 A22

)

Here A21 = A2:n,1 is (n − 1) × 1 and A22 = A2:n,2:n is itself

lower triangular and (n − 1) × (n − 1). Now Ax = b is

(
a11 01×(n−1)
A21 A22

) (
x1

x2:n

)

=

(
b1

b2:n

)

The top row of the matrix says a11x1 = b1 so x1 = b1/a11.

The bottom block of the matrix has (n − 1) rows

(A21 A22)

(
x1

x2:n

)

= b2:n

A21x1 + A22x2:n = b2:n

A22x2:n = b2:n − A21x1

Ãx̃ = b̃ now (n − 1) × (n − 1)

We are left with a smaller version of the problem we started with.

It took 2(n − 1) + 1 additions, subtractions, multiplications and

divisions (called ’flops’) to solve for x1 and calculate Ã and b̃.
Since

∑n
i=1(2i − 1) = n2, forward solving is n2 flops.

R has forwardsolve(A,b) for forward elimination for n × n
lower triangular A and n × 1 b. There is backsolve(A,b) for

backward elimination on upper triangular A.

LU factorization

The most efficient method for solving Ax = b for a general full

rank n × n square matrix is to factorize

A = LU

into a lower L and upper U triangular matrices ∗ at a cost of

2n3/3 + O(n2) flops (we havn’t proven this, it’s just assertion)

and then solving LUx = b by setting y = Ux and then

solving Ly = b (forwards)

and then

solving Ux = y (backwards).

The function solve(A,b) uses this method. The two elimina-

tion steps take 2n2 flops so the leading term in the number of

flops is 2n3/3.
∗if there is no LU factorization we seek A = PLU with P a permutation.

Normal linear models

Consider the aids data

> d = read.table("AIDS.txt")

> head(d)

cases time time.sq

1 185 1 1

2 200 2 4

3 293 3 9

4 374 4 16

5 554 5 25

6 713 6 36

> (n<-dim(d)[1])

[1] 25

Suppose we want to fit the normal linear regression model

yi = α + β1xi + β2x
2
i + εi, i = 1, 2, . . . , n

with yi the number of cases in month xi, and εi ∼ N(0, σ2) iid

normal errors. In vector form the model is

y1
y2
.
.
.

yn

=

1 x1 x2
1

1 x2 x2
2

. . .

. . .

. . .
1 xn x2

n

α
β1
β2

 +

ε1
ε2
.
.
.

εn

or

y = Xθ + ε

with θ = (α, β1, β2)
T etc.

The R commands to fit this normal linear model are

d.lm=lm(cases ∼time+time.sq,data=d)

summary(d.lm)

Here d.lm is a list full of results from the model fit output by

lm(). Notice the R formula notation cases∼time+time.sq.

The columns of summary(d.lm) output give θ̂i, an estimate σ̂i
of the error in θ̂i, and columns for the test H0: θi = 0.

If the model is good, the regression should interpolate the data

with normal residuals y − Xθ̂. We can check this using a

normal qq-plot for the residuals, qqnorm(residuals(d.lm));

qqline(residuals(d.lm)).

What’s inside the lm() box?

The equations Xθ = y are over-determined (more equations
than variables, n > p, we cant expect a solution), so minimize
R(θ) = (y − Xθ)T (y − Xθ); get Xθ as close as we can to y.

R(θ) =
n∑

i=1

(yi − α − β1xi − β2x
2
i)

2

= (y − Xθ)T (y − Xθ)

= (Xθ)TXθ − 2yTXθ + yTy

Taking partial derivatives wrt θ and imposing ∂R
∂θ = 0 (p equa-

tions) leads to the p normal equations

XTXθ = XTy

for θ in this over-determined system. This is Ax = b with A =
XTX, x = θ and b = XTy.

Solving the normal equations using QR factorization

We could use LU factorization to solve the normal equations.

However QR factorization is usually best as it is more stable

numerically.

X =

1 −1
0 10−10

0 0

 XTX =

(
1 −1
−1 1 + 10−20

)

At machine precision 1+10−20 and 1 are equal so XTX appears

to be singular. Any method (like LU) that solves (XTX)θ =
XTy by first computing XTX will fail on this problem.

Instead, factorize X = QR (Q is n × p and orthogonal, so

QTQ = Ip×p, and R is p× p, upper triangular, and has positive

entries on the diagonal). This takes 2np2 flops (assertion). Since

XTX = RTQTQR,

the normal equations

XTXθ = XTy

are

RTRθ = RTQTy.

We can solve these by

solving Rθ = QTy (backwards)

(np + p2 flops) for an overall leading order cost of 2np2 flops.

The functions qr.solve(X,y) and lm() use this method. LU

would take np2 but may fail.

In R,

X=cbind(rep(1,n),d$time,d$time.sq)

followed by

d.theta=qr.solve(X,d$cases)

to give the regression parameters.

Optimization via Newton Raphson

We optimized the residual sum of squares, R(θ) over θ using a

direct method. It terminates in a fixed number of operations

which we know in advance. Indirect methods for optimization

iterate to the optimal solution (hopefully). Indirect methods

come with fewer guarantees, but can be used to treat more

complex problems.

We optimize a function f(x) over x, and seek x such that

f ′(x) = 0. We can apply the Newton Raphson algorithm. The

iteration for zeros of f(x) was

xn+1 = xn −
f(xn)

f ′(xn)

so the iteration for zeros of f ′(x) is

xn+1 = xn −
f ′(xn)

f ′′(xn)
.

We stop when f ′(xn) < ǫ and check f ′′(xn) to determine the

type of stationary point.

The Newton-Raphson method - convergence

Proposition : if f ′(x∗) = 0, and at all points in some neighbor-

hood of x∗, f ′, f ′′ and f ′′′ exist and f ′′ is nowhere zero then the

Newton-Raphson method converges quadratically if |x0 − x∗| is

sufficiently small.

Proof : Suppose x∗ is a root of f ′(x) = 0 then expanding

f ′(x∗) in a Taylor series around the nth iteration of the Newton-

Raphson scheme, xn, gives

0 = f ′(x∗) = f ′(xn)+(x∗−xn)f ′′(xn)+(x∗−xn)2
f ′′′(λ)

2
(1)

for some λ in between x∗ and xn.

By definition

xn+1 = xn −
f ′(xn)

f ′′(xn)
⇒ f ′(xn) = f ′′(xn)(xn − xn+1) (2)

Combining (1) and (2) gives

0 = f ′′(xn)(x∗ − xn+1) +
f ′′′(λ)

2
(x∗ − xn)2.

Now let ǫn = x∗ − xn and ǫn+1 = x∗ − xn+1 be the errors at

the nth and (n + 1)th iterations.

⇒ 0 = f ′′(xn)ǫn+1 +
f ′′′(λ)

2
ǫ2n

⇒ ǫn+1 = −
f ′′′(λ)

2f ′′(xn)
ǫ2n

⇒ ǫn+1 ∝ ǫ2n

i.e. the error at the (n + 1)th iteration is proportional to the

square of the error at the nth iteration.

Comments about Newton-Raphson method

• Some functions have more than one stationary point and

Newton-Raphson won’t necessarily find the best one.

• If f ′′(xn) = 0 (or is very close to 0) at any iteration then

the next iterate is undefined (or very far from xn).

• Otherwise, the Newton-Raphson iteration converges to a lo-

cal stationary point, provided the start point is close enough

to a stationary point.

• The Bisection method works under weaker conditions, but

has slower (linear) convergence. The error is halved each

iteration.

Part A Statistical programming HT13

Geoff Nicholls

Lecture 6: Simulation

Overview for lecture 6

1. Estimating an expectation by simulating the random variable

2. Simulating familiar distributions using R

3. Monte Carlo Integration

4. Pseudo-random numbers and random number seeds.

5. Markov Chains and Random Walks

(a) Simulating simple discrete distributions

(b) Simulating simple Markov chains

(c) Simulating Hitting Times

Estimating Expectations using simulation

Suppose Xi ∼ fX, i = 1, 2, ..., n are iid r.v. with pdf fX and we

want µf = E(g(X)). Assume σ2
g = Var(f(X)) is finite. Let

ḡn =
1

n

n∑

i=1

g(Xi)

and

S2
g =

1

(n − 1)

n∑

i=1

(Xi − ḡn)2.

By the CLT, and approximately at large n, ḡn ∼ N(µg, σ
2
g/n), so

µ̂f = f̄n estimates µg and ḡn ± z1−α/2S/
√

n is an approximate

level-α CI for µg (zp the p-quantile of a standard normal).

Example: suppose X ∼ Exp(1), and we need an estimate of

E

(
1

1 + sin2(X)

)

=

∫ ∞

0

1

1 + sin2(x)
e−xdx.

We want X1, X2, ..., Xn iid like Exp(1) and then compute

ḡn =
n∑

i=1

1

1 + sin2(Xi)

x=rexp(1e6); fx=1/(1+sin(x)^2)
fbar=mean(fx); Sqn=sqrt(var(fx)/n)
Za=qnorm(1-0.025); ci=c(fbar-Za*Sqn,fbar+Za*Sqn)

At n = 106, I found ḡn=0.758126, S/
√

n=0.0001787730 and

level-0.05 confidence interval c(0.7578, 0.7585).

Simulating familiar distributions

rDBN(),dDBN(),pDBN(),qDBN() are random numbers, the pdf/pmf,

the cdf and quantiles for the distribution DBN.

rexp(n=10,rate=1) gives 10 Exp(1) rv.

pnorm(q,mean=0,sd=1) is P (Z ≤ q) for Z ∼ N(0, 1)

dpois(x,lambda) is exp(−λ)λx/x!

If q=qt(p=0.975,df=4) then 0.975 = P (X ≤ q), X ∼ t(4).

What does this return? rchisq(n=10,df=5)

Monte Carlo Integration

Suppose we have an integral

I =

∫

Ω
h(x)dx

to evaluate. If we can find a density fX on Ω and a (nice)

function g(x) so that h(x) = g(x)fX(x) then
∫

Ω
h(x)dx =

∫

Ω
g(x)fX(x)dx

so I = E(g(X)) and we can use simulation to get Î.

Example:

I =

∫ 4

2
log(log(x))dx

=

∫ b

a
(b − a) log(log(x)) ×

1

b − a
dx,

with a = 2, b = 4. But

fX(x) = (b − a)−1

is the density of a uniform X ∼ U(a, b), for a < X < b, so

I =

∫ 4

2
2 log(log(x))]fX(x)dx

= E(2 log(log(X))).

Simulate Xi ∼ U(a, b) and report Î = n−1∑
i 2 log(log(Xi)).

> n=10000
> X=runif(n,min=2,max=4)
> gx=2*log(log(X))
> (Ihat=mean(gx))
[1] 0.1155751
> (Sqn=sqrt(var(gx)/n))
[1] 0.003855409

Report Î = 0.116(4). Compare Î = 0.117141566 (quadrature).

In this example we are integrating in dimension one. For inte-

grals in dimensions less than about 15 (depending on the prob-

lem) methods based on quadrature will be more efficient (smaller

error for given runtime). Monte Carlo methods are a ’heavy ham-

mer’ for high dimensional problems, for integrals with awkward

constraints, or sometimes simply because they are simple and

’good enough’.

Pseudo random numbers

How do the rexp(), rnorm() etc functions work? How do they

simulate random variables from the given distribution?

Many take transforms of U ∼ U(0, 1) rv. For example, if we want

to simulate a r.v. X with CDF F (x) then use X = F−1(U):

P (X < x) = P (F−1(U) < x) = P (U < F (x)) = F (x).

Example: Exp(1) has CDF F (x) = 1 − exp(−x) so

X = − log(1 − U) ⇒ X ∼ Exp(1)

and that is how rexp() simulates Exp(1) distributed rv. But ...

we need a supply of U(0, 1) rv to begin with.

Let integers b (small) and m (large) be given.

1. choose a seed x0 between 1 and m.

2. iterate

i xi = bxi−1(modm)
ii ui = xi/m

If b and m are carefully chosen, the deterministic sequence

u1, u2, . . . behaves like an iid U [0, 1] sequence.

The default R runif() sequence is a Mersenne-Twister. The

seed is set using using the clock i.e. the seed depends on when

we start R.

The seed can be set using the set.seed() function. Handy for

debugging when working with rv.

Simulating simple discrete distributions

Suppose X ∈ {1, 2, ..., K} and the pmf is P (X = i) = pi, so

p = (p1, p2, ..., pK) is a vector of probabilities summing to one.

Simulate X ∼ p using the following algorithm.

1) Let q = (q1, q2, ..., qK) with q1 = p1, q2 = p1 + p2, ...qK = 1.

2) Simulate U ∼ U(0, 1).

3) Let i be the index of the smallest entry in q exceeding U .

The algorithm returns X = i. The probability to get X = i is the

probability for the event qi−1 < U ≤ qi which is qi − qi−1 = pi.

The value of X returned is equal i with probability pi.

Simulating Markov Chains

Consider a Markov chain, X1, X2, ... with K possible states, and

transition matrix P ,

P (i, j) = P (Xt = j|Xt−1 = i) i, j ∈ {1, 2, ..., K}.

For example if X1 = 1 and

P =

1/2 0 3/8 1/8
0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2

then X2 is simulated using the distribution in row X1, that is

X2 ∼ (1/2, 0, 3/8, 1/8). In general

Xt+1 ∼ (P (Xt, 1), P (Xt, 2), ..., P (Xt, K))

and we iterate this to simulate as many steps as we need.

Here is some code for you to complete in the prac.

Markov<-function(P,x=1,n=1) {

#simulate n steps of a MC with transition matrix P

#starting from x

X=rep(0,n)

X[1]=x

for (t in 2:n) {

#assign a vector p to be row X[t-1,] of P

#simulate X[t] with pmf p

}

return(X)

}

Random walks and hitting times

In the gamblers ruin, Xk ∈ {0, 1, 2, ..., N}. The gambler starts

with Xk = m. At each step we add one with probability p and

otherwise remove one. The process stops at the first k such

that Xk ∈ {0, N}.

This is a Markov chain (can you write down the transition ma-

trix?). However it is more straightforward to simulate a coin toss

at each step (Heads with probability p) and add or subtract one

from the total as the coin is Heads or Tails.

	L1
	L2
	L3
	L4
	L5
	L6

