Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Lecture 9: Recursion, Efficiency and Runtime.

Overview for lecture 9

- 1. Recursive evaluation
- 2. Extended example: Cholesky Factorization
- 3. Runtime analysis
- 4. Extended example: sorting

Recursion Recursive programmes call themselves.

Example: Plan and write a recursive function for f(x) = x!.

$$f(1) = 1,$$
 $f(x) = xf(x-1)$ for $x > 1.$

Our factorial function returns x! = 1 on input x = 1 and otherwise calls itself to evaluate (x - 1)! and multiplies this by x.

```
factorial<-function(x) {
    if (x==1) return(1)
    if (x>1) return(x*factorial(x-1))
    stop('x must be a positive integer')
}
```

Each function in the nested sequence of calls to factorial() has its own variable environment with its own distinct version of the local variable \mathbf{x} .

Recursive algorithms are often shorter and clearer than the corresponding implementation via **for** or **while**. However, they may be demanding of memory, if each level of recursion makes its own copy of local variables.

Example: Cholesky Factorization

Recall simulation for the multivariate normal, $X \sim N(\mu, A)$ with $X = (X_1, X_2, ..., X_n)$, and A a $n \times n$ symmetric positive definite variance matrix.

We find a matrix L so that

$$A = LL^T.$$
 If $Z = (Z_1, Z_2, ..., Z_n) \ Z_i \sim N(0, 1), i = 1, 2, ..., n$ and we set
$$X = \mu + LZ,$$

then $X \sim N(\mu, A)$.

There are many choices for L. The Cholesky factorization is particularly neat. Because A is positive definite, there is a lower triangular matrix L satisfying $A = LL^T$.

Here is a recursive algorithm for L. Chop A and L up into blocks

$$A = \begin{pmatrix} a_{11} & A_{21}^T \\ \hline \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} 1 \times 1 & 1 \times (n-1) \\ \hline \\ (n-1) \times 1 & (n-1) \times (n-1) \end{pmatrix}$$

Here $A_{21} = A_{2:n,1}$ is $(n-1) \times 1$ and $A_{22} = A_{2:n,2:n}$ is itself lower triangular and $(n-1) \times (n-1)$. Similarly

$$L = \begin{pmatrix} L_{11} & 0_{1 \times (n-1)} \\ \\ \hline \\ L_{21} & L_{22} \end{pmatrix}$$

Since L is lower triangular it is zero above the diagonal, and in particular all the entries in the top row except the first are zero.

Since
$$A = LL^{T}$$
,
 $\begin{pmatrix} a_{11} & A_{21}^{T} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{11} & 0_{1 \times (n-1)} \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} L_{11} & L_{21}^{T} \\ 0_{(n-1) \times 1} & L_{22}^{T} \end{pmatrix}$

$$= \begin{pmatrix} L_{11}^{2} & L_{11}L_{21}^{T} \\ \hline L_{11}L_{21} & L_{22}L_{22}^{T} + L_{21}L_{21}^{T} \end{pmatrix}$$

so $L_{11} = \sqrt{a_{11}}$, $L_{21} = A_{21}/\sqrt{a_{11}}$ and the A_{22} block gives $\begin{aligned} A_{22} - L_{21}L_{21}^T &= L_{22}L_{22}^T \\ \tilde{A} &= \tilde{L}\tilde{L}^T \quad \text{now } (n-1) \times (n-1) \end{aligned}$

To solve for L_{22} , we need the Cholesky factorization of the $(n-1) \times (n-1)$ matrix $\tilde{A} = A_{22} - L_{21}L_{21}^{T}$, so we have reduced the problem by one dimension. Finally, if n = 1 so A is a scalar, $L = \sqrt{A}$ terminates the recursion.

Runtime analysis

We measure the runtime in units of operations. This might be the number of additions, subtractions, divisions and multiplications. For a sorting algorithm we can count the number of comparisons.

We typically give the asymptotic run time - as a function of the input size, for large values of the input. We give the order of the function - quadratic, cubic etc. * More efficient algorithms have (asymptotically at least) smaller run times.

We can give the worst case (for any input) or the average case (usually more interesting but harder to calculate).

*If the runtime is g(n) and g(n) is O(h(n)) then $h(n)/g(n) \to c$ as $n \to \infty$.

Here is an algorithm to find the smallest entry of n > 1 numbers.

```
my.min<-function(x) {
    a=x[1]
    for (k in 2:length(x)) {
        if (x[k]<a) a<-x[k]
        }
        a
}</pre>
```

Let g(x) be the number of comparisons. Clearly g(x) = n - 1independent of x, so the runtime is O(n). What is the runtime of my.chol()? Let g(A) be the number of flops to factorize $n \times n$ matrix A_n .

It took $1 + (n-1) + (n-1)^2 + (n-1)^2$ additions, subtractions, multiplications and divisions (called 'flops') to solve for L_{11} and calculate the new A. The highest power is $2n^2$.

We have to repeat this for $n \to n - 1 \to n - 2... \to 1$. Since $\sum_{i=1}^{n} 2n^2 = 2n(n+2)(2n+1)/6$, so this implementation has approximately $g(A_n) \simeq 2n^3/3$ flops or $O(n^3)$.

If we had exploited symmetry we could get this down to about $n^3/3$ but we cant change the order (still $O(n^3)$).

```
#Cholesky
my.chol<-function(A) {</pre>
   n=dim(A)[1] #assume nxn
   if (n==1) return(sqrt(A))
   L=matrix(0,n,n)
   L[1,1] = sqrt(A[1,1])
                                      #count as 1 op
   L[2:n,1] = A[2:n,1]/L[1,1]
                                      #n-1 ops
   L[1,2:n] = rep(0,n-1)
   A22=A[2:n,2:n,drop=FALSE]
   newA=A22-L[2:n,1]%*%t(L[2:n,1]) #2(n-1)^2 here
                                      #but n(n-1) possible
   L[2:n,2:n] = my.chol(newA)
   return(L)
}
```

Example: runtime and sorting algorithm Here are a couple of R algorithms to sort a list $x = (x_1, x_2, ..., x_n)$ of n numbers.

Simple sort: find the smallest element $x_{(1)}$. Suppose it is the kth element. Remove the kth element from the list, so $y = (x_1, ..., x_{k-1}, x_{k+1}, ..., x_n)$. Return the vector $(x_{(1)}, f(y))$.

This takes $(n-1) + (n-2) + ... + 1 = O(n^2)$ comparisons independent of the order of the numbers in x.

Bubble sort: sweep through the vector, swapping x_i and x_{i+1} if $x_i > x_{i+1}$. Repeat this till the vector is in order. After *i* sweeps the last *i* elements $x_{(n-i)}, ..., x_{(n)}$ must be in their correct places so the algorithm terminates after *n* sweeps at most with each sweep using n - 1 comparisons.

This takes $O(n^2)$ comparisons at worst, and O(n) at best.

Merge sort let Merge sort be a function f(x) that takes as input an array x of n numbers and returns a sorted array x'.

[0] If x has one entry it is sorted so return x' = x. Otherwise...

[1] Split x into two halves $y = (x_1, ..., x_{\lfloor n/2 \rfloor})$ and $z = (x_{\lfloor n/2 \rfloor + 1}, ..., n)$.

[2] Sort y and z using Merge sort so y' = f(y) and z' = f(z).

[3] Let x' = g(y', z') where g() is a function that takes as input two sorted vectors and merges their elements to return the sorted union of y' and z' (two sorted vectors of n/2 elements can be merged in n - 1 operations at worst).

[4] Return the sorted array x'.

The runtime of Merge sort is $O(n \log(n))$ for *n*-component x so it is preferred over Bubble sort. We wouldnt use an $O(n^2)$ algorithm when an $O(n \log(n))$ algorithm is available.

Proof (non-examinable): Suppose $n = 2^k$ for simplicity. Let g_k be the number of comparisons to sort this vector. Merge sort splits the vector into two vectors of length $n/2 = 2^{k-1}$. These two sub-vectors have to be sorted, which is $2g_{k-1}$ comparisons. The number of comparisons to merge the sorted sub-vectors is $2 \times (n/2) - 1 = 2^k - 1$ so

$$g_k = 2g_{k-1} + 2^k - 1$$

and $g_1 = 1$. The homogeneous solutions are $g_k = A2^k$ with particular solution $k2^k + 1$. Applying the initial condition gives $g_k = (k-1)2^k + 1$ or $g(x) = n \log_2(n) - n + 1$. We conclude that Merge sort needs $O(n \log_2(n))$ comparisons, irrespective of the input.