Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Lecture 9: Recursion, Efficiency and Runtime.

Overview for lecture 9

1. Recursive evaluation
2. Extended example: Cholesky Factorization
3. Runtime analysis
4. Extended example: sorting

Recursion

Recursive programmes call themselves.

Example: Plan and write a recursive function for $f(x)=x$!.

$$
f(1)=1, \quad f(x)=x f(x-1) \quad \text { for } x>1
$$

Our factorial function returns $x!=1$ on input $x=1$ and otherwise calls itself to evaluate $(x-1)$! and multiplies this by x.

```
factorial<-function(x) {
    if (x==1) return(1)
    if (x>1) return(x*factorial(x-1))
    stop('x must be a positive integer')
}
```

Each function in the nested sequence of calls to factorial() has its own variable environment with its own distinct version of the local variable x .

Recursive algorithms are often shorter and clearer than the corresponding implementation via for or while. However, they may be demanding of memory, if each level of recursion makes its own copy of local variables.

Example: Cholesky Factorization

Recall simulation for the multivariate normal, $X \sim N(\mu, A)$ with $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, and A a $n \times n$ symmetric positive definite variance matrix.

We find a matrix L so that

$$
A=L L^{T}
$$

If $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right) Z_{i} \sim N(0,1), i=1,2, \ldots, n$ and we set

$$
X=\mu+L Z
$$

then $X \sim N(\mu, A)$.
There are many choices for L. The Cholesky factorization is particularly neat. Because A is positive definite, there is a lower triangular matrix L satisfying $A=L L^{T}$.

Here is a recursive algorithm for L. Chop A and L up into blocks

$$
A=\left(\begin{array}{c|c}
a_{11} & A_{21}^{T} \\
\hline A_{21} & A_{22}
\end{array}\right)=\left(\begin{array}{c|c}
1 \times 1 & 1 \times(n-1) \\
\hline(n-1) \times 1 & (n-1) \times(n-1)
\end{array}\right)
$$

Here $A_{21}=A_{2: n, 1}$ is $(n-1) \times 1$ and $A_{22}=A_{2: n, 2: n}$ is itself lower triangular and $(n-1) \times(n-1)$. Similarly

$$
L=\left(\begin{array}{c|c}
L_{11} & 0_{1 \times(n-1)} \\
\hline L_{21} & L_{22}
\end{array}\right)
$$

Since L is lower triangular it is zero above the diagonal, and in particular all the entries in the top row except the first are zero.

Since $A=L L^{T}$,

$$
\begin{aligned}
\left(\begin{array}{cc}
a_{11} & A_{21}^{T} \\
A_{21} & A_{22}
\end{array}\right) & =\left(\begin{array}{cc}
L_{11} & 0_{1 \times(n-1)} \\
L_{21} & L_{22}
\end{array}\right)\left(\begin{array}{cc}
L_{11} & L_{21}^{T} \\
0_{(n-1) \times 1}^{T} & L_{22}^{T}
\end{array}\right) \\
& =\left(\begin{array}{c|c}
L_{11}^{2} & L_{11} L_{21}^{T} \\
\hline & \\
\hline L_{11} L_{21} & L_{22} L_{22}{ }^{T}+L_{21} L_{21}^{T}
\end{array}\right)
\end{aligned}
$$

so $L_{11}=\sqrt{a_{11}}, L_{21}=A_{21} / \sqrt{a_{11}}$ and the A_{22} block gives

$$
\begin{aligned}
A_{22}-L_{21} L_{21}{ }^{T} & =L_{22} L_{22}{ }^{T} \\
\tilde{A} & =\tilde{L} \tilde{L}^{T} \quad \text { now }(n-1) \times(n-1)
\end{aligned}
$$

To solve for L_{22}, we need the Cholesky factorization of the $(n-1) \times(n-1)$ matrix $\tilde{A}=A_{22}-L_{21} L_{21}{ }^{T}$, so we have reduced the problem by one dimension. Finally, if $n=1$ so A is a scalar, $L=\sqrt{A}$ terminates the recursion.

Runtime analysis

We measure the runtime in units of operations. This might be the number of additions, subtractions, divisions and multiplications. For a sorting algorithm we can count the number of comparisons.

We typically give the asymptotic run time - as a function of the input size, for large values of the input. We give the order of the function - quadratic, cubic etc. * More efficient algorithms have (asymptotically at least) smaller run times.

We can give the worst case (for any input) or the average case (usually more interesting but harder to calculate).
*If the runtime is $g(n)$ and $g(n)$ is $O(h(n))$ then $h(n) / g(n) \rightarrow c$ as $n \rightarrow \infty$.

Here is an algorithm to find the smallest entry of $n>1$ numbers.

```
my.min<-function(x) {
    a=x[1]
    for (k in 2:length(x)) {
        if (x[k]<a) a<-x[k]
    }
    a
}
```

Let $g(x)$ be the number of comparisons. Clearly $g(x)=n-1$ independent of x, so the runtime is $O(n)$.

What is the runtime of my. chol()? Let $g(A)$ be the number of flops to factorize $n \times n$ matrix A_{n}.

It took $1+(n-1)+(n-1)^{2}+(n-1)^{2}$ additions, subtractions, multiplications and divisions (called 'flops') to solve for L_{11} and calculate the new A. The highest power is $2 n^{2}$.

We have to repeat this for $n \rightarrow n-1 \rightarrow n-2 \ldots \rightarrow 1$. Since $\sum_{i=1}^{n} 2 n^{2}=2 n(n+2)(2 n+1) / 6$, so this implementation has approximately $g\left(A_{n}\right) \simeq 2 n^{3} / 3$ flops or $O\left(n^{3}\right)$.

If we had exploited symmetry we could get this down to about $n^{3} / 3$ but we cant change the order (still $O\left(n^{3}\right)$).

```
#Cholesky
my.chol<-function(A) {
    n=dim(A)[1] #assume nxn
    if (n==1) return(sqrt(A))
    L=matrix(0,n,n)
    L[1, 1]=sqrt(A[1, 1])
    L[2:n,1]=A[2:n, 1]/L[1,1]
    L[1, 2:n]=rep(0,n-1)
    A22=A[2:n,2:n,drop=FALSE]
newA=A22-L[2:n,1]%*%t(L[2:n,1]) #2(n-1)^2 here
                                #but n(n-1) possible
    L[2:n, 2:n]=my.chol(newA)
    return(L)
}
```

Example: runtime and sorting algorithm Here are a couple of R algorithms to sort a list $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n numbers.

Simple sort: find the smallest element $x_{(1)}$. Suppose it is the k th element. Remove the k th element from the list, so $y=$ $\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right)$. Return the vector $\left(x_{(1)}, f(y)\right)$.

This takes $(n-1)+(n-2)+\ldots+1=O\left(n^{2}\right)$ comparisons independent of the order of the numbers in x.

Bubble sort: sweep through the vector, swapping x_{i} and x_{i+1} if $x_{i}>x_{i+1}$. Repeat this till the vector is in order. After i sweeps the last i elements $x_{(n-i)}, \ldots, x_{(n)}$ must be in their correct places so the algorithm terminates after n sweeps at most with each sweep using $n-1$ comparisons.

This takes $O\left(n^{2}\right)$ comparisons at worst, and $O(n)$ at best.

Merge sort let Merge sort be a function $f(x)$ that takes as input an array x of n numbers and returns a sorted array x^{\prime}.
[0] If x has one entry it is sorted so return $x^{\prime}=x$. Otherwise...
[1] Split x into two halves $y=\left(x_{1}, \ldots, x_{\lfloor n / 2\rfloor}\right)$ and $z=\left(x_{\lfloor n / 2\rfloor+1}, \ldots, n\right)$.
[2] Sort y and z using Merge sort so $y^{\prime}=f(y)$ and $z^{\prime}=f(z)$.
[3] Let $x^{\prime}=g\left(y^{\prime}, z^{\prime}\right)$ where $g()$ is a function that takes as input two sorted vectors and merges their elements to return the sorted union of y^{\prime} and z^{\prime} (two sorted vectors of $n / 2$ elements can be merged in $n-1$ operations at worst).
[4] Return the sorted array x^{\prime}.
The runtime of Merge sort is $O(n \log (n))$ for n-component x so it is preferred over Bubble sort. We wouldnt use an $O\left(n^{2}\right)$ algorithm when an $O(n \log (n))$ algorithm is available.

Proof (non-examinable): Suppose $n=2^{k}$ for simplicity. Let g_{k} be the number of comparisons to sort this vector. Merge sort splits the vector into two vectors of length $n / 2=2^{k-1}$. These two sub-vectors have to be sorted, which is $2 g_{k-1}$ comparisons. The number of comparisons to merge the sorted sub-vectors is $2 \times(n / 2)-1=2^{k}-1$ so

$$
g_{k}=2 g_{k-1}+2^{k}-1
$$

and $g_{1}=1$. The homogeneous solutions are $g_{k}=A 2^{k}$ with particular solution $k 2^{k}+1$. Applying the initial condition gives $g_{k}=(k-1) 2^{k}+1$ or $g(x)=n \log _{2}(n)-n+1$. We conclude that Merge sort needs $O\left(n \log _{2}(n)\right)$ comparisons, irrespective of the input.

