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Unnormalized Importance sampling

Recall p(x) = p̃(x)/Zp, q(x) = q̃(x)/Zq with Zp, Zq commonly

intractable.

Same issue as for rejection. The IS weights are w = p/q so need

q and p normalized.

Let w̃ = p̃/q̃. If we use 1
n

∑n
i=1 w̃(Yi)φ(Yi) then we find
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We need to estimate Zp/Zq and divide. 1
n

∑n
i=1 w̃(Yi) is the

estimator we need.
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since
∑n

i=1 w(Yi)/n is the IS estimator for φ = 1. We will see

shortly that indeed

θ̃IS
n =

∑n
i=1 w̃(Yi)φ(Yi)
∑n

i=1 w̃(Yi)

is consistent for Ep(φ(X)).



Example: we saw that if Yi ∼ Γ(a, b) and

w(y) =
Γ(a)βα

Γ(α)ba
yα−a exp(−(β − b)y)

then

θ̂IS
n =

1

n

n
∑

i=1

φ(Yi)w(Yi)

is unbiased and consistent for Ep(φ(X)) with X ∼ Γ(α, β).
From above, if

w̃(y) = yα−a exp(−(β − b)y)

then

θ̃IS
n =

∑n
i=1 φ(Yi)w̃(Yi)
∑n

i=1 w̃(Yi)

is a consistent estimator for Ep(φ(X)).



Example (cont). I will take a = b = 1 so Y ∼ Exp(1) and

estimate Ep(X) with p(x) = Γ(x; α = 2, β = 4).

> phi<-function(x) {x}
>
> theta.est<-function(n,alpha,beta) {
+ #IS estimate of E_p(phi(X)), X~Gamma(alpha,beta)
+ y<-rexp(n)
+ w<-y^(alpha-1)*exp(-(beta-1)*y)
+ theta.hat<-mean(phi(y)*w)/mean(w)
+ return(theta.hat)
+ }
> theta.est(1000,alpha=2,beta=4)
[1] 0.5043166

We can use the delta method to estimate the variance of our

estimate. Also, there is a CLT for θ̃IS
n . See the course texts for

more on this.



Claim: If Yi ∼ q, i = 1, 2, ..., n iid, p(x) > 0 ⇒ q(x) > 0 and

θ̃IS
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1
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i=1 w̃(Yi)φ(Yi)

1
n

∑n
i=1 w̃(Yi)

(

=
an

bn
say

)

then θ̃IS
n is consistent for θ = Ep(φ(X)).

Proof: Let a/b = Eq(w̃φ)/E(w̃). We have seen that a/b = θ.
We need to show that
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as n → ∞. It is easy to see (from our result for regular IS



estimators) that an
P

−→ a (and bn etc) at large n. Then
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→ 0 as n → ∞ by the consistency of an and bn.

The middle step uses bn > b/2, and
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Markov chain Monte Carlo Methods

Our aim is to estimate Ep(φ(X)) for p(x) some pmf (or pdf)

defined for x ∈ Ω.

Up to this point we have based our estimates on iid draws from

either p itself, or some proposal distribution with pmf q.

In MCMC we simulate a correlated sequence X0, X1, X2, ....
which satisfies Xt ∼ p (or at least Xt converges to p in distri-

bution) and rely on the usual estimate φ̂n = n−1 ∑n−1
t=0 φ(Xt).

We will suppose the space of states of X is finite (and therefore

discrete).

MCMC methods are applicable to countably infinite and con-

tinuous state spaces, and are one of the most versatile and

widespread classes of Monte Carlo algorithms currently.



Markov chains

From Part A Probability. Let {Xt}
∞
t=0 be a homogeneous Markov

chain of random variables on Ω with starting distribution X0 ∼
p(0) and transition probability

Pi,j = P(Xt+1 = j|Xt = i).

Denote by P
(n)
i,j the n-step transition probabilities

P
(n)
i,j = P(Xt+n = j|Xt = i)

and by p(n)(i) = P(Xn = i).

Recall that P is irreducible if and only if, for each pair of states

i, j ∈ Ω there is n such that P
(n)
i,j > 0. The Markov chain is

aperiodic if P
(n)
i,j is non zero for all sufficiently large n.



Markov chains

Here is an example of a periodic chain: Ω = {1, 2, 3, 4}, p(0) =
(1, 0, 0, 0), and transition matrix

P =









0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0









,

since P
(n)
1,1 = 0 for n odd.

Exercise: show that if P is irreducible and Pi,i > 0 for some

i ∈ Ω then P is aperiodic.



The Stationary Distribution and Reversible Markov chains

Recall that the pmf π(i), i ∈ Ω,
∑

i∈Ω π(i) = 1 is a stationary

distribution of P if πP = π. If p(0) = π then

p(1)(j) =
∑

i∈Ω

p(0)(i)Pi,j,

so p(1)(j) = π(j) also. Iterating, p(t) = π for each t = 1, 2, ... in

the chain, so the distribution of Xt ∼ p(t) doesn’t change with

t, it is stationary.

In a reversible Markov chain we cannot distinguish the direction

of simulation from inspection of a realization of the chain and

its reversal, even with knowledge of the transition matrix.

Most MCMC algorithms are based on reversible Markov chains.



Denote by P ′
i,j = P(Xt−1 = j|Xt = i) the transition matrix for

the time-reversed chain.

It seems clear that a Markov chain will be reversible if and only

if P = P ′, so that any particular transition occurs with equal

probability in forward and reverse directions.

Theorem.

(I) If there is a probability mass function π(i), i ∈ Ω satisfying

π(i) ≥ 0,
∑

i∈Ω π(i) = 1 and

“Detailed balance”: π(i)Pi,j = π(j)Pj,i for all pairs i, j ∈ Ω,

then π = πP so π is stationary for P .

(II) If in addition p(0) = π then P ′ = P and the chain is reversible

with respect to π.



Proof of (I): sum both sides of detailed balance equation over

i ∈ Ω. Now
∑

i Pj,i = 1 so
∑

i π(i)Pi,j = π(j).

Proof of (II), we have π a stationary distribution of P so P(Xt =
i) = π(i) for all t = 1, 2, ... along the chain. Then

P ′
i,j = P(Xt−1 = j|Xt = i)

= P(Xt = i|Xt−1 = j)
P(Xt−1 = j)

P(Xt = i)
(Bayes rule)

= Pj,iπ(j)/π(i) (stationarity)

= Pi,j (detailed balance).



Convergence and the Ergodic Theorem

If the (finite state space) MC is irreducible and aperiodic then

the stationary distribution is unique and p(t) → π as t → ∞. If

we simulate the MC X0, X1, ...Xn to large enough n from any

start X0 = x0 then since Xt ∼ pt and pt ≃ π at large t, ’most’

of the samples are ’nearly’ distributed according to π.

We will use {Xt}
n−1
t=0 to estimate Ep(φ(X)). The ‘obvious’ es-

timator is

φ̂n =
1

n

n−1
∑

t=0

φ(Xt),

but the Xt are correlated and only converge in distribution to π.



Theorem. If {Xt}
∞
t=0 is an irreducible and aperiodic Markov

chain on a finite space of states Ω, with stationary distribution

π then, as n → ∞, for any bounded function φ : Ω → R,

P (Xn = i) → π(i) and φ̂n → Ep(φ(X)).

We refer to such a chain as ergodic with equilibrium π.

φ̂n is consistent. In Part A Probability the Ergodic theorem asks

for positive recurrent X0, X1, X2, .... The stated conditions are

simpler here because we are assuming a finite state space for the

Markov chain.

We would really like to have a CLT for φ̂n formed from the

Markov chain output, so we have confidence intervals ±
√

var(φ̂n)

as well as the central point estimate φ̂n itself. These results hold

for all the examples discussed later but are a little beyond us at

this point.



Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm allows to simulate a

Markov Chain with any given equilibrium distribution. We will

start with simulation of random variable X ∼ p on a finite state

space. We want to arrange things so that the Markov chain has

equilibrium p.

We give an algorithm for simulating Xt+1 give Xt. The algo-

rithm determines the transition probabilities P (Xt+1 = j|Xt =
i) and the transition matrix P . We have to choose the algorithm

so that the transition matrix it simulates satisfies pP = p.

Let p(x) = p̃(x)/Zp be the pmf on finite state space Ω =
{1, 2, ..., m}. We will call p the (pmf of the) target distribu-

tion.

Choose a ‘proposal’ transition matrix q(y|x). We will use the

notation Y ∼ q(·|x) to mean Pr(Y = y|X = x) = q(y|x).



Metropolis Hastings MCMC: the following algorithm simulates a

Markov chain. If the the chain is irreducible and aperiodic then

it is ergodic with equilibrium distribution p.

Let Xt = x. Xt+1 is determined in the following way.

[1] Draw y ∼ q(·|x) and u ∼ U [0, 1].
[2] If

u ≤ α(y|x) where α(y|x) = min

{

1,
p̃(y)q(x|y)

p̃(x)q(y|x)

}

set Xt+1 = y, otherwise set Xt+1 = x.

We initialise this with X0 = x0, p(x0) > 0 and iterate for t =
1, 2, 3, ...n to simulate the samples we need.



Example: Simulating a Discrete Distribution

Let p(i) = i/Zp with Zp =
∑m

i=1 i.

Give a MH MCMC algorithm ergodic for p(i), i = 1, 2, ..., m.

Step 1: Choose a proposal distribution q(j|i). It needs to be

easy to simulate and determine a irreversible chain.

A simple distribution that ’will do’ is Y ∼ U{1, 2, ..., m}, so

q(i) = 1/m, i = 1, 2, ..., m.

This proposal scheme is clearly irreducible (we can get from A
to B in a single hop).



Step 2: write down the algorithm.

If Xt = x, then Xt+1 is determined in the following way.

[1] Simulate y ∼ U{1, 2, ..., m} and u ∼ U [0, 1].
[2] If

u ≤ min

{

1,
p̃(y)q(x|y)

p̃(x)q(y|x)

}

= min

{

1,
y

x

}

set Xt+1 = y, otherwise set Xt+1 = x.



#MCMC simulate X_t according to p=[1:m]/sum(1:m).

m<-30

n<-10000; X<-rep(NA,n); X[1]<-1

for (t in 1:(n-1)) {

x<-X[t]

y<-ceiling(m*runif(1))

a<-min(1,y/x)

U<-runif(1)

if (U<=a) {

X[t+1]<-y

} else {

X[t+1]<-x

}

}



Left: x-axis is Markov chain step counter t = 1, 2, 3...200 and

y-axis is Markov chain state Xt for p̃(i) = i, i = 1, 2, ..., m,

m = 30.

Right: histogram of X1, X2, ..., Xn for n = 1000.
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