Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Lecture 8: Importance sampling; Markov chains

Notes and Problem sheets are available at
www.stats.ox.ac.uk $\backslash \sim$ nicholls $\backslash$ PartASSP

## Unnormalized Importance sampling

Recall $p(x)=\tilde{p}(x) / Z_{p}, q(x)=\tilde{q}(x) / Z_{q}$ with $Z_{p}, Z_{q}$ commonly intractable.

Same issue as for rejection. The IS weights are $w=p / q$ so need $q$ and $p$ normalized.

Let $\tilde{w}=\tilde{p} / \tilde{q}$. If we use $\frac{1}{n} \sum_{i=1}^{n} \tilde{w}\left(Y_{i}\right) \phi\left(Y_{i}\right)$ then we find

$$
\begin{aligned}
E_{q}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\tilde{p}\left(Y_{i}\right)}{\tilde{q}\left(Y_{i}\right)} \phi\left(Y_{i}\right)\right) & =E_{q}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{Z_{p}}{Z_{q}} \frac{p\left(Y_{i}\right)}{q\left(Y_{i}\right)} \phi\left(Y_{i}\right)\right) \\
& =\frac{Z_{p}}{Z_{q}} E_{p}(\phi(X))
\end{aligned}
$$

We need to estimate $Z_{p} / Z_{q}$ and divide. $\frac{1}{n} \sum_{i=1}^{n} \tilde{w}\left(Y_{i}\right)$ is the estimator we need.

$$
\begin{aligned}
E_{q}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\tilde{p}\left(Y_{i}\right)}{\tilde{q}\left(Y_{i}\right)}\right) & =E_{q}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{Z_{p}}{Z_{q}} \frac{p\left(Y_{i}\right)}{q\left(Y_{i}\right)}\right) \\
& =\frac{Z_{p}}{Z_{q}} E_{q}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{p\left(Y_{i}\right)}{q\left(Y_{i}\right)}\right) \\
& =Z_{p} / Z_{q}
\end{aligned}
$$

since $\sum_{i=1}^{n} w\left(Y_{i}\right) / n$ is the IS estimator for $\phi=1$. We will see shortly that indeed

$$
\tilde{\theta}_{n}^{\mathrm{IS}}=\frac{\sum_{i=1}^{n} \tilde{w}\left(Y_{i}\right) \phi\left(Y_{i}\right)}{\sum_{i=1}^{n} \tilde{w}\left(Y_{i}\right)}
$$

is consistent for $E_{p}(\phi(X))$.

Example: we saw that if $Y_{i} \sim \Gamma(a, b)$ and

$$
w(y)=\frac{\Gamma(a) \beta^{\alpha}}{\Gamma(\alpha) b^{a}} y^{\alpha-a} \exp (-(\beta-b) y)
$$

then

$$
\hat{\theta}_{n}^{\mathrm{IS}}=\frac{1}{n} \sum_{i=1}^{n} \phi\left(Y_{i}\right) w\left(Y_{i}\right)
$$

is unbiased and consistent for $E_{p}(\phi(X))$ with $X \sim \Gamma(\alpha, \beta)$. From above, if

$$
\tilde{w}(y)=y^{\alpha-a} \exp (-(\beta-b) y)
$$

then

$$
\tilde{\theta}_{n}^{\mathrm{IS}}=\frac{\sum_{i=1}^{n} \phi\left(Y_{i}\right) \tilde{w}\left(Y_{i}\right)}{\sum_{i=1}^{n} \tilde{w}\left(Y_{i}\right)}
$$

is a consistent estimator for $E_{p}(\phi(X))$.

Example (cont). I will take $a=b=1$ so $Y \sim \operatorname{Exp}(1)$ and estimate $E_{p}(X)$ with $p(x)=\Gamma(x ; \alpha=2, \beta=4)$.
$>$ phi<-function(x) $\{x\}$
$>$
> theta.est<-function(n,alpha,beta) \{

+ \#IS estimate of E_p(phi(X)), X~Gamma(alpha, beta)
$+\quad \mathrm{y}<-\mathrm{rexp}(\mathrm{n})$
$+\quad \mathrm{w}<-\mathrm{y}^{\wedge}(\mathrm{alpha}-1) * \exp (-($ beta-1) $* \mathrm{y})$
$+\quad$ theta.hat<-mean(phi $\left.(\mathrm{y}) *_{\mathrm{w}}\right) /$ mean(w)
+ return(theta.hat)
$+\}$
> theta.est (1000, alpha=2, beta=4)
[1] 0.5043166
We can use the delta method to estimate the variance of our estimate. Also, there is a CLT for $\tilde{\theta}_{n}^{\mathrm{IS}}$. See the course texts for more on this.

Claim: If $Y_{i} \sim q, i=1,2, \ldots, n$ iid, $p(x)>0 \Rightarrow q(x)>0$ and

$$
\tilde{\theta}_{n}^{\mathrm{IS}}=\frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{w}\left(Y_{i}\right) \phi\left(Y_{i}\right)}{\frac{1}{n} \sum_{i=1}^{n} \tilde{w}\left(Y_{i}\right)} \quad\left(=\frac{a_{n}}{b_{n}} \text { say }\right)
$$

then $\tilde{\theta}_{n}^{\text {IS }}$ is consistent for $\theta=E_{p}(\phi(X))$.
Proof: Let $a / b=E_{q}(\tilde{w} \phi) / E(\tilde{w})$. We have seen that $a / b=\theta$. We need to show that

$$
P\left(\left|\frac{a_{n}}{b_{n}}-\frac{a}{b}\right|>\epsilon\right) \rightarrow 0
$$

as $n \rightarrow \infty$. It is easy to see (from our result for regular IS
estimators) that $a_{n} \xrightarrow{P} a$ (and $b_{n}$ etc) at large $n$. Then

$$
\begin{aligned}
P\left(\left\lvert\, \frac{a_{n}}{b_{n}}\right.\right. & \left.\left.-\frac{a}{b} \right\rvert\,>\epsilon\right) \\
& \leq P\left(\left|b_{n}-b\right|>\frac{b}{2}\right)+P\left(\left|b_{n}-b\right| \leq \frac{b}{2},\left|a_{n} b-a b_{n}\right|>\epsilon b_{n} b\right) \\
& \leq P\left(\left|b_{n}-b\right|>\frac{b}{2}\right)+P\left(\left|a_{n} b-a b_{n}\right|>\epsilon \frac{b^{2}}{2}\right) \\
& <P\left(\left|b_{n}-b\right|>\frac{b}{2}\right)+P\left(\left|a_{n} b-a b\right|>\frac{\epsilon b^{2}}{4}\right)+P\left(\left|a b-a b_{n}\right|>\frac{\epsilon b^{2}}{4}\right)
\end{aligned}
$$

$$
\rightarrow 0 \text { as } n \rightarrow \infty \text { by the consistency of } a_{n} \text { and } b_{n}
$$

The middle step uses $b_{n}>b / 2$, and

$$
P\left(\left|a_{n} b-a b_{n}\right|>\frac{\epsilon b^{2}}{2}\right) \leq P\left(\left|a_{n} b-a b\right|>\frac{\epsilon b^{2}}{4}\right)+P\left(\left|a b-a b_{n}\right|>\frac{\epsilon b^{2}}{4}\right)
$$

## Markov chain Monte Carlo Methods

Our aim is to estimate $\mathbb{E}_{p}(\phi(X))$ for $p(x)$ some pmf (or pdf) defined for $x \in \Omega$.

Up to this point we have based our estimates on iid draws from either $p$ itself, or some proposal distribution with pmf $q$.

In MCMC we simulate a correlated sequence $X_{0}, X_{1}, X_{2}, \ldots$. which satisfies $X_{t} \sim p$ (or at least $X_{t}$ converges to $p$ in distribution) and rely on the usual estimate $\hat{\phi}_{n}=n^{-1} \sum_{t=0}^{n-1} \phi\left(X_{t}\right)$.

We will suppose the space of states of $X$ is finite (and therefore discrete).

MCMC methods are applicable to countably infinite and continuous state spaces, and are one of the most versatile and widespread classes of Monte Carlo algorithms currently.

## Markov chains

From Part A Probability. Let $\left\{X_{t}\right\}_{t=0}^{\infty}$ be a homogeneous Markov chain of random variables on $\Omega$ with starting distribution $X_{0} \sim$ $p^{(0)}$ and transition probability

$$
P_{i, j}=\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i\right)
$$

Denote by $P_{i, j}^{(n)}$ the $n$-step transition probabilities

$$
P_{i, j}^{(n)}=\mathbb{P}\left(X_{t+n}=j \mid X_{t}=i\right)
$$

and by $p^{(n)}(i)=\mathbb{P}\left(X_{n}=i\right)$.
Recall that $P$ is irreducible if and only if, for each pair of states $i, j \in \Omega$ there is $n$ such that $P_{i, j}^{(n)}>0$. The Markov chain is aperiodic if $P_{i, j}^{(n)}$ is non zero for all sufficiently large $n$.

Markov chains
Here is an example of a periodic chain: $\Omega=\{1,2,3,4\}, p^{(0)}=$ $(1,0,0,0)$, and transition matrix

$$
P=\left(\begin{array}{cccc}
0 & 1 / 2 & 0 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right),
$$

since $P_{1,1}^{(n)}=0$ for $n$ odd.
Exercise: show that if $P$ is irreducible and $P_{i, i}>0$ for some $i \in \Omega$ then $P$ is aperiodic.

The Stationary Distribution and Reversible Markov chains
Recall that the pmf $\pi(i), i \in \Omega, \sum_{i \in \Omega} \pi(i)=1$ is a stationary distribution of $P$ if $\pi P=\pi$. If $p^{(0)}=\pi$ then

$$
p^{(1)}(j)=\sum_{i \in \Omega} p^{(0)}(i) P_{i, j}
$$

so $p^{(1)}(j)=\pi(j)$ also. Iterating, $p^{(t)}=\pi$ for each $t=1,2, \ldots$ in the chain, so the distribution of $X_{t} \sim p^{(t)}$ doesn't change with $t$, it is stationary.

In a reversible Markov chain we cannot distinguish the direction of simulation from inspection of a realization of the chain and its reversal, even with knowledge of the transition matrix.

Most MCMC algorithms are based on reversible Markov chains.

Denote by $P_{i, j}^{\prime}=\mathbb{P}\left(X_{t-1}=j \mid X_{t}=i\right)$ the transition matrix for the time-reversed chain.

It seems clear that a Markov chain will be reversible if and only if $P=P^{\prime}$, so that any particular transition occurs with equal probability in forward and reverse directions.

## Theorem.

(I) If there is a probability mass function $\pi(i), i \in \Omega$ satisfying $\pi(i) \geq 0, \sum_{i \in \Omega} \pi(i)=1$ and
"Detailed balance": $\pi(i) P_{i, j}=\pi(j) P_{j, i} \quad$ for all pairs $i, j \in \Omega$, then $\pi=\pi P$ so $\pi$ is stationary for $P$.
(II) If in addition $p^{(0)}=\pi$ then $P^{\prime}=P$ and the chain is reversible with respect to $\pi$.

Proof of (I): sum both sides of detailed balance equation over $i \in \Omega$. Now $\sum_{i} P_{j, i}=1$ so $\sum_{i} \pi(i) P_{i, j}=\pi(j)$.

Proof of (II), we have $\pi$ a stationary distribution of $P$ so $\mathbb{P}\left(X_{t}=\right.$ $i)=\pi(i)$ for all $t=1,2, \ldots$ along the chain. Then

$$
\begin{aligned}
P_{i, j}^{\prime} & =\mathbb{P}\left(X_{t-1}=j \mid X_{t}=i\right) \\
& =\mathbb{P}\left(X_{t}=i \mid X_{t-1}=j\right) \frac{\mathbb{P}\left(X_{t-1}=j\right)}{\mathbb{P}\left(X_{t}=i\right)} \text { (Bayes rule) } \\
& =P_{j, i} \pi(j) / \pi(i) \text { (stationarity) } \\
& =P_{i, j} \text { (detailed balance). }
\end{aligned}
$$

## Convergence and the Ergodic Theorem

If the (finite state space) $M C$ is irreducible and aperiodic then the stationary distribution is unique and $p^{(t)} \rightarrow \pi$ as $t \rightarrow \infty$. If we simulate the $\mathrm{MC} X_{0}, X_{1}, \ldots X_{n}$ to large enough $n$ from any start $X_{0}=x_{0}$ then since $X_{t} \sim p^{t}$ and $p^{t} \simeq \pi$ at large $t$, 'most' of the samples are 'nearly' distributed according to $\pi$.

We will use $\left\{X_{t}\right\}_{t=0}^{n-1}$ to estimate $\mathbb{E}_{p}(\phi(X))$. The 'obvious' estimator is

$$
\hat{\phi}_{n}=\frac{1}{n} \sum_{t=0}^{n-1} \phi\left(X_{t}\right)
$$

but the $X_{t}$ are correlated and only converge in distribution to $\pi$.

Theorem. If $\left\{X_{t}\right\}_{t=0}^{\infty}$ is an irreducible and aperiodic Markov chain on a finite space of states $\Omega$, with stationary distribution $\pi$ then, as $n \rightarrow \infty$, for any bounded function $\phi: \Omega \rightarrow R$,

$$
P\left(X_{n}=i\right) \rightarrow \pi(i) \text { and } \hat{\phi}_{n} \rightarrow \mathbb{E}_{p}(\phi(X))
$$

We refer to such a chain as ergodic with equilibrium $\pi$.
$\hat{\phi}_{n}$ is consistent. In Part A Probability the Ergodic theorem asks for positive recurrent $X_{0}, X_{1}, X_{2}, \ldots$. The stated conditions are simpler here because we are assuming a finite state space for the Markov chain.

We would really like to have a CLT for $\hat{\phi}_{n}$ formed from the Markov chain output, so we have confidence intervals $\pm \sqrt{\operatorname{var}\left(\hat{\phi}_{n}\right)}$ as well as the central point estimate $\hat{\phi}_{n}$ itself. These results hold for all the examples discussed later but are a little beyond us at this point.

## Metropolis-Hastings Algorithm

The Metropolis-Hastings ( MH ) algorithm allows to simulate a Markov Chain with any given equilibrium distribution. We will start with simulation of random variable $X \sim p$ on a finite state space. We want to arrange things so that the Markov chain has equilibrium $p$.

We give an algorithm for simulating $X_{t+1}$ give $X_{t}$. The algorithm determines the transition probabilities $P\left(X_{t+1}=j \mid X_{t}=\right.$ $i)$ and the transition matrix $P$. We have to choose the algorithm so that the transition matrix it simulates satisfies $p P=p$.

Let $p(x)=\tilde{p}(x) / Z_{p}$ be the pmf on finite state space $\Omega=$ $\{1,2, \ldots, m\}$. We will call $p$ the (pmf of the) target distribution.

Choose a 'proposal' transition matrix $q(y \mid x)$. We will use the notation $Y \sim q(\cdot \mid x)$ to mean $\operatorname{Pr}(Y=y \mid X=x)=q(y \mid x)$.

Metropolis Hastings MCMC: the following algorithm simulates a Markov chain. If the the chain is irreducible and aperiodic then it is ergodic with equilibrium distribution $p$.

Let $X_{t}=x . X_{t+1}$ is determined in the following way.
[1] Draw $y \sim q(\cdot \mid x)$ and $u \sim U[0,1]$.
[2] If

$$
u \leq \alpha(y \mid x) \text { where } \alpha(y \mid x)=\min \left\{1, \frac{\tilde{p}(y) q(x \mid y)}{\tilde{p}(x) q(y \mid x)}\right\}
$$

set $X_{t+1}=y$, otherwise set $X_{t+1}=x$.

We initialise this with $X_{0}=x_{0}, p\left(x_{0}\right)>0$ and iterate for $t=$ $1,2,3, \ldots n$ to simulate the samples we need.

Example: Simulating a Discrete Distribution

Let $p(i)=i / Z_{p}$ with $Z_{p}=\sum_{i=1}^{m} i$.

Give a MH MCMC algorithm ergodic for $p(i), i=1,2, \ldots, m$.

Step 1: Choose a proposal distribution $q(j \mid i)$. It needs to be easy to simulate and determine a irreversible chain.

A simple distribution that 'will do' is $Y \sim U\{1,2, \ldots, m\}$, so

$$
q(i)=1 / m, \quad i=1,2, \ldots, m
$$

This proposal scheme is clearly irreducible (we can get from $A$ to $B$ in a single hop).

Step 2: write down the algorithm.

If $X_{t}=x$, then $X_{t+1}$ is determined in the following way.
[1] Simulate $y \sim U\{1,2, \ldots, m\}$ and $u \sim U[0,1]$.
[2] If

$$
\begin{aligned}
u & \leq \min \left\{1, \frac{\tilde{p}(y) q(x \mid y)}{\tilde{p}(x) q(y \mid x)}\right\} \\
& =\min \left\{1, \frac{y}{x}\right\}
\end{aligned}
$$

set $X_{t+1}=y$, otherwise set $X_{t+1}=x$.

```
#MCMC simulate X_t according to p=[1:m]/sum(1:m).
m<-30
n<-10000; X<-rep(NA,n); X[1]<-1
for (t in 1:(n-1)) {
    x<-X[t]
    y<-ceiling(m*runif(1))
    a<-min(1,y/x)
    U<-runif(1)
    if (U<=a) {
        X[t+1]<-y
    } else {
        X[t+1]<-x
    }
}
```

Left: $x$-axis is Markov chain step counter $t=1,2,3 \ldots 200$ and $y$-axis is Markov chain state $X_{t}$ for $\tilde{p}(i)=i, i=1,2, \ldots, m$, $m=30$.

Right: histogram of $X_{1}, X_{2}, \ldots, X_{n}$ for $n=1000$.



