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Lecturer: Geoff Nicholls
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Lecture 8: Importance sampling; Markov chains
Notes and Problem sheets are available at
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Unnormalized Importance sampling

Recall p(x) = p(x)/Zp, q(x) = G(x)/Zq with Zy, Zg commonly
intractable.

Same issue as for rejection. The IS weights are w = p/q so need
q and p normalized.

Let w = p/g. If we use =37 - w(Y;)o(Y;) then we find
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We need to estimate Zp/Zy and divide.

estimator we need.
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since > I ;w(Y;)/n is the IS estimator for ¢ = 1. We will see

shortly that indeed
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Example: we saw that if Y; ~ I'(a,b) and

w(y) = l;iz))iZyo‘_anp(—(ﬁ ~b)y)

then
. 1 M
O =~ > ¢(Yiw(Y)
i=1

is unbiased and consistent for Ep(¢(X)) with X ~ I'(«a, B).
From above, if

w(y) =y~ “exp(—(8 — b)y)
then
i—1 ¢(Yi)w(Y;)
i—1 W(Y;)

is a consistent estimator for Ep(¢(X)).
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Example (cont). I will take a = b = 1 so Y ~ Exp(l) and
estimate Ep(X) with p(x) =T'(x;a = 2,8 = 4).

> phi<-function(x) {x}

theta.est<-function(n,alpha,beta) {
#IS estimate of E_p(phi(X)), X"Gamma(alpha,beta)
y<-rexp(n)
w<-y~ (alpha-1)*exp(-(beta-1) *xy)
theta.hat<-mean(phi(y)*w)/mean(w)
return(theta.hat)

+ 4+ + + + VvV

+ }
> theta.est(1000,alpha=2,beta=4)
[1] 0.5043166

We can use the delta method to estimate the variance of our
estimate. Also, there is a CLT for 9}15. See the course texts for
more on this.



Claim: If Y; ~ q, i = 1,2, ...,n iid, p(x) > 0= g(x) > 0 and
5 e B(Y5) 8 (V) ( an )
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then 65> is consistent for § = Ep(p(X)).
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Proof: Let a/b = E4(w¢)/E(w). We have seen that a/b = 6.

We need to show that
an a

bn, b
as n — oo. It is easy to see (from our result for regular IS
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estimators) that ap, £, a (and by etc) at large n. Then
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— 0 as n — oo by the consistency of a,, and by,.

The middle step uses b, > b/2, and
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P(|lanb—aby| > 7) < P(lanb—ab| > I)—I—P(|ab—abn| > —).
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Markov chain Monte Carlo Methods

Our aim is to estimate Ep(¢(X)) for p(x) some pmf (or pdf)
defined for x € (2.

Up to this point we have based our estimates on iid draws from
either p itself, or some proposal distribution with pmf q.

In MCMC we simulate a correlated sequence Xg, X1, X9, ....
which satisfies Xy ~ p (or at least X; converges to p in distri-
bution) and rely on the usual estimate ¢, = n ! > qb(Xt)

We will suppose the space of states of X is finite (and therefore
discrete).

MCMC methods are applicable to countably infinite and con-
tinuous state spaces, and are one of the most versatile and
widespread classes of Monte Carlo algorithms currently.



Markov chains

From Part A Probability. Let {X;}72, be a homogeneous Markov
chain of random variables on {2 with starting distribution Xg ~

p(O) and transition probability
P j = P(X¢p1 = J| X = 1).

Denote by PZ.(?’) the n-step transition probabilities
Pi(,?) = P(X¢4n = j| Xz = 19)
and by p("™ (i) = P(Xp = ).

Recall that P is irreducible if and only if, for each pair of states
1,7 € €2 there is n such that P,L-(;-L) > (0. The Markov chain is

aperiodic if P,L-(?) iIs non zero for all sufficiently large n.



Markov chains

Here is an example of a periodic chain: 2 = {1,2,3,4},]0(0) =
(1,0,0,0), and transition matrix

0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2 |
1/2 0 1/2 0

P =

since Pl(ri) — (0 for n odd.

Exercise: show that if P is irreducible and F;; > 0 for some
1 € Q) then P is aperiodic.



The Stationary Distribution and Reversible Markov chains

Recall that the pmf 7(%),7 € Q, > ,cqm(i) = 1 is a stationary
distribution of P if 1P = 7. If p(0) = 7 then
1), . 0),.
pV@) =Y p V0P,
€€
SO p(l)(j) = 7m(j) also. Iterating, p) = 7 foreacht = 1,2, ... in

the chain, so the distribution of X3 ~ p(t) doesn’t change with
t, it is stationary.

In a reversible Markov chain we cannot distinguish the direction
of simulation from inspection of a realization of the chain and

its reversal, even with knowledge of the transition matrix.

Most MCMC algorithms are based on reversible Markov chains.



Denote by P} ; = P(Xy—1 = j|X¢ = 4) the transition matrix for
the time-reversed chain.

It seems clear that a Markov chain will be reversible if and only
if P = P! so that any particular transition occurs with equal
probability in forward and reverse directions.

Theorem.
(I) If there is a probability mass function 7 (7),7 € § satisfying

(i) > 0, > ;eqm(i) =1 and
“Detailed balance”: 7(:)P; ; = w(j)Pj; for all pairs 2,7 € (2,

then m = wP so 7 is stationary for P.

(II) If in addition p(O) = 7 then P/ = P and the chain is reversible
with respect to .



Proof of (I): sum both sides of detailed balance equation over
i € Q2. Now > ; P, =1s0 3, m(i)P;; = m(j).

Proof of (II), we have 7 a stationary distribution of P so P(X; =
i) = m(2) for all t = 1,2, ... along the chain. Then

P!, = P(Xi—1 =j|X¢ = 1)
P(X¢—1=17)
P( X+ = 1)
P; ;m(j)/m(i) (stationarity)

P; ; (detailed balance).

= P(X¢t =1 X¢_1=17) (Bayes rule)




Convergence and the Ergodic Theorem

If the (finite state space) MC is irreducible and aperiodic then
the stationary distribution is unique and p(t) — mast— oo. If
we simulate the MC X, X1, ...Xn to large enough n from any
start Xg = xg then since X3 ~ pt and pt ~ 7 at large ¢, 'most’
of the samples are 'nearly’ distributed according to .

We will use {Xt}?’z_ol to estimate E,(¢(X)). The ‘obvious’ es-
timator is

A 1 n—1
an — Z Qb(Xt),
=0

but the X; are correlated and only converge in distribution to .



Theorem. If {X;}7°, is an irreducible and aperiodic Markov
chain on a finite space of states (2, with stationary distribution
m then, as n — oo, for any bounded function ¢ : 2 — R,

P(Xp =1i) — (i) and ¢n — Ep(p(X)).
We refer to such a chain as ergodic with equilibrium 7.
qASn is consistent. In Part A Probability the Ergodic theorem asks
for positive recurrent Xg, X1, X9,.... The stated conditions are

simpler here because we are assuming a finite state space for the
Markov chain.

We would really like to have a CLT for ggn formed from the

Markov chain output, so we have confidence intervals :t\/var(gﬁn)

as well as the central point estimate qgn itself. These results hold
for all the examples discussed later but are a little beyond us at
this point.



Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm allows to simulate a
Markov Chain with any given equilibrium distribution. We will
start with simulation of random variable X ~ p on a finite state
space. We want to arrange things so that the Markov chain has
equilibrium p.

We give an algorithm for simulating X;1 give X;. The algo-
rithm determines the transition probabilities P(X;y11 = 7| Xt =
i) and the transition matrix P. We have to choose the algorithm
so that the transition matrix it simulates satisfies pP = p.

Let p(x) = p(x)/Zp be the pmf on finite state space Q =
{1,2,...,m}. We will call p the (pmf of the) target distribu-
tion.

Choose a ‘proposal’ transition matrix g(y|zr). We will use the
notation Y ~ q(:|z) to mean Pr(Y = y|X =) = q(y|x).



Metropolis Hastings MCMC: the following algorithm simulates a
Markov chain. If the the chain is irreducible and aperiodic then
it is ergodic with equilibrium distribution p.

Let Xy = x. X411 is determined in the following way.

[1] Draw y ~ q(:|z) and u ~ U|0, 1].
2] If

ﬁ(y)Q(xly)}

u < a(y|x) where a(y|r) = min {1’ p(x)q(y|x)

set X;411 = y, otherwise set X;,1 = .

We initialise this with X = xq, p(xg) > 0 and iterate for t =
1,2,3,...n to simulate the samples we need.



Example: Simulating a Discrete Distribution
Let p(2) = i/Zp with Zp = 31" | 4.
Give a MH MCMC algorithm ergodic for p(i),7 = 1,2, ..., m.

Step 1: Choose a proposal distribution ¢(j|i). It needs to be
easy to simulate and determine a irreversible chain.

A simple distribution that 'will do’ is Y ~ U{1,2, ..., m}, so
q(z) =1/m, +=1,2,...,m.

This proposal scheme is clearly irreducible (we can get from A
to B in a single hop).



Step 2: write down the algorithm.

If Xy = x, then X;41 is determined in the following way.
[1] Simulate y ~ U{1,2,...,m} and u ~ U[0, 1].

2] If
< min{l ﬁ(y)Q(wa)}
- 'p(z)q(y|x)

= min {1, g}
x

set Xy41 =y, otherwise set X;11 = x.




#MCMC simulate X_t according to p=[1:m]/sum(1l:m).
m<-30
n<-10000; X<-rep(NA,n); X[1]<-1
for (t in 1:(n-1)) {
x<-X[t]
y<-ceiling(m*runif (1))
a<-min(1,y/x)
U<-runif (1)
if (U<=a) A
X[t+1]<-y
} else {
X[t+1]<-x
+



Left: x-axis is Markov chain step counter t = 1,2, 3...200 and
y-axis is Markov chain state X; for p(i) = 4,2 = 1,2,...,m,
m = 30.

Right: histogram of Xy, Xo, ..., Xy for n = 1000.
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