
Part A Statistical programming HT14

Geoff Nicholls

Lecture 7: Working with Data

Overview

1. Using functions to write code that works

2. For-loops and apply()

3. Reading and writing data.

4. Attaching data frames to the search path.

5. Further operations on data: subsetting.

6. Plotting data

(a) Histograms and overlays.

(b) Boxplots and the R Formula notation.

(c) Point plots

7. Debugging*, Saving a workspace*

More functions

In the last practical I asked you to write some code to simulate

a normal by rejection from a double exponential. Recall the

algorithm

[1] simulate y ∼ exp(−|x|) and u ∼ U(0, 1)

[2] if u < exp(−y2/2 + |y| − 1/2) accept X = y and stop.

Otherwise repeat [1].

We break this job down into manageable pieces.

First write a function to sample y ∼ exp(−|x|) - and test it!

q<-function(n=1) {

#simulate exp(-|x|)

X<-log(runif(n))

Y<-sample(c(-1,1),n,replace=T)

return(X*Y)

}

> q(n=4)

[1] -0.2589713443 0.0043643318 0.0007715165 -1.4679607563

> y<-q(1e4)

> a<-hist(y,100,freq=F)

> lines(a$breaks,0.5*exp(-abs(a$breaks)),col=2,lwd=2)

D
en

si
ty

−10 −5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

Then write a function implementing the rejection sampler.

[1] simulate y ∼ exp(−|x|) and u ∼ U(0, 1)

[2] if u < exp(−y2/2 + |y| − 1/2) accept X = y and stop.

Otherwise repeat [1].

my_rnorm<-function() {

#simulate X

finished<-FALSE;

while (!finished) {

y<-q(n=1);

u<-runif(n=1)

p.over.Mq<-exp(-y^2/2+abs(y)-0.5)

finished<-(u<p.over.Mq)

}

return(y)

}

I illustrated how to test this in the practical solutions.

Try to write your code so it is easy to check and maintain.

We mentioned modularity (breaking code elements up into func-

tions). Information hiding (dont let a function have information

it doesnt need) makes code easier to read and correct. Care-

ful planning and commenting help. Give variables meaningful

names.

For-loops and apply()

We try to avoid for-loops when we code. For-loops tend to run

slower and are harder to read.

#cumulative sum

n<-10; X<-rep(1,n); for (i in 2:10) X[i]<-i+X[i-1]; X

X<-cumsum(1:n); X

#sum x^2 x=1...n

tot<-0; for (x in 1:10) tot<-tot+x^2

sum((1:10)^2)

apply(object,row/col=1/2,function) is often useful in this

context. It applies the function to all the entries in each row or

column of the object.

> X<-matrix(c(1,2,3,4),2,2); X

[,1] [,2]

[1,] 1 3

[2,] 2 4

> apply(X,1,sum) #sum rows

[1] 4 6

> apply(X,2,max) #sum columns

[1] 2 4

> how many entries in each column less than 2.5?

> apply(X,2,function(x) {sum(x<2.5)})

[1] 2 0

We can often use apply() to replace for-loops

#simulate n Gamma(a,b)
a<-3; b<-4.1; n<-10; X<-numeric(n)
for (i in 1:n) {

tot<-0
for (j in (1:a)) {

tot<-tot-log(runif(1))/b
}
X[i]<-tot

}
X

#or
M<- -log(matrix(runif(a*n),a,n));
X<-apply(M,2,sum); X

Getting Data into R

hellung.txt is text file of data from an experiment on the

growth of Tetrahymena cells.

The cell concentration (conc) was set at the beginning of the

experiment and the average cell diameter (diameter) was mea-

sured for two groups of cell cultures where glucose was either

added (glucose=1) or not added (glucose=2) to the growth

medium. A theoretical model predicts diameter proportional to

the log of concentration. The effect of glucose on the cell di-

ameter is of interest.

The data are a table, with one row for each observation and a

column for each variable. The first row gives variable names.

We can use the read.table() function to read it. We can read

over the net or from a local file. If we use a local file we have

to give the path, or set the working directory os the directory

containing the file.

This table has a header line, so we tell R to expect a header.

hd=read.table(’hellung.txt’,header=TRUE)

creates a data.frame with cases corresponding to rows and

variables to columns in the file.

If we have a data frame and want to save it we have a few

options. To save it as an array of numbers with variable names

as column headers

write.table(hd,’filename.txt’,header=TRUE)

How many observations are there, and what are the variable

names? dim(hd), names(hd)

Show me the first few rows, and basic properties of the variables!

head(hd),str(hd), summary(hd)

Show me the data!

#basic plotting

x=log(hd$conc); y=hd$diameter;

plot(x,y,xlab=’log(conc)’,ylab=’cell diameter’)

10 11 12 13

19
20

21
22

23
24

25
26

log(conc)

ce
ll

di
am

et
er

There are R-packages (of which

more anon) for reading special-

ized formats such as xls and im-

age formats.

The function and variable search path

When you type a function or variable name, R searches for the

object in a list called the search path.

search() shows you the databases in which R searches. The

first, ”.GlobalEnv”, is your R console workspace. The last,

”package:base” has all the basic R functions.

If you attach() a data frame to the search path, the variables

inside the data frame can be found.

For example, you must type hd$glucose to get the glucose

numbers. Following attach(hd), you can access it with just

glucose. Now search() shows hd in the path.

plot(log(conc),diameter) #an error

attach(hd)

plot(log(conc),diameter)

You can detach(’hd’) an object to remove it from the path.

You might do this if you wanted avoid a conflict with something

else with the same name. In many commands you can specify

where to look for the variables, using the data= option. This

is often easier read, and shows explicitly which data are being

used.

Data summaries Here are some useful functions.

mean(), median()

sd(), var(), cov(),cor()

range(), quantile(), summary()

min(), max(), pmin(), pmax()

which.max(), which.min()

sum(),cumsum(),cumprod()

Many of these functions have an argument na.rm which needs

to be set to TRUE in order to remove NAs from the data.

There are no NA’s in these data so here is a simple exam-

ple: If eg=c(1,2,NA,3,4) then mean(eg) gives an error but

mean(eg,na.rm=T) gives 2.5, the mean of (1, 2, 3, 4). R is forc-

ing you to be explicit about the NA-handling.

Applying functions over data, and subsetting

The apply() command is also very useful for applying functions

to all rows or all columns of an array or data frame. For example,

apply(hd,2,max) finds the maximum of each variable.

Sometimes we want to work on subsets of a data frame. Boolean

variables are converted to array indices when they appear as the

index to a vector.

For example, to compare the mean cell diameters for cells with

and without glucose we might calculate mean(diameter[glucose==1])
and mean(diameter[glucose==2])

We can create a new data frame from the subset of observations

of interest: for example, hd.g1=hd[glucose==1,] pulls out the

rows of hd that satisfy our condition, and takes all columns.

Plotting Data: Histograms

Graphical data displays provide insight to data. Think carefully

about how to display data to highlight features of interest. We

begin with simple exploratory plots.

hist(diameter,freq=FALSE) gives a histogram of the num-

bers in the variable diameter. The y-axis shows counts.

hist(diameter,freq=TRUE) gives a histogram with area scaled

to one, like a probability density.

par(mfrow = c(1,2)); hist(diameter); hist(conc) puts

two entire plots in one window, in 1 row and 2 columns.

You may need to adjust the number of histogram bins. The

default ’Sturges’ rule gives too few on large data sets. Try the

’Scott’ rule, fix the number yourself, or give a vector of bin

locations.

n = 100000; x = rnorm(n)

par(mfrow = c(2,2));

hist(x, main = "Sturges")

hist(x, breaks = "Scott", main = "Scott")

hist(x, breaks = sqrt(n),main=’sqrt(n)’)

hist(x, breaks = seq(from=-5,to=5,length.out=200),

main=’my breaks’)

Overlays

The lines(), points() and text() commands can be used to

overlay lines, points and text on an existing plot (already created

with plot() or hist()).

For example, we can overlay a density estimate (computed using

the density() function) on a histogram.

hist(diameter,freq=FALSE);

lines(density(diameter),col=2)

Here lines will recognize density() output and done some-

thing sensible.

Histogram of diameter

diameter
D

en
si

ty

20 22 24 26

0.
00

0.
05

0.
10

0.
15

0.
20

hist(diameter,freq=FALSE);

d=density(diameter)

lines(dx,dy,col=2)

has the same effect.

Boxplots and the R formula notation

These are useful for plotting a continuous variable against one

or more discrete variables.

The R formula notation is useful here. The formula

variable1~variable2

means variable1 is a response variable and depends on variable2.

For example, we expect the distribution of cell diameters to be
different depending on whether or not glucose was used.

boxplot(diameter~glucose,xlab=’glucose’,ylab=’diameter’)

1 2

19
20

21
22

23
24

25
26

glucose

di
am

et
er

lower whisker

lower quartile

median

upper quartile

upper whisker

Points beyond the outer whiskers are possible outliers.

Scatter plots

We started with an elementary plot. By varying color (col)
and point character pch from point to point, you can highlight

different subsets of data within the plot. For example

plot(log(conc), diameter, col=glucose, pch=glucose)

The color and shape of each point is decided by its glucose value.

We can overlay a line using the abline(intercept,slope)
command, which simply takes the intercept and slope.

abline(37.806,1.264)
abline(36.327,1.264,col=2)

We can plot or overlay a function using curve()

curve(37.806-1.264*x, from=8 , to=15, add=T)

curve(36.327-1.264*x, from=8 , to=15, add=T, col=2)

10 11 12 13

19
20

21
22

23
24

25
26

log(conc)

di
am

et
er

Debugging

Your have just implemented an algorithm in R. It ran without

reporting errors on the first input you tried. What do you do?

Answer: assume it contains errors. Test it thoroughly using input

for which you know the correct output.

You are implementing an algorithm in R. It crashes∗. What do

you do?

When an error occurs R saves the list of active functions. trace-

back() prints that list. See example in L5.R.

∗terminates with an error message

You cant see the values of variables local to a function you called.

You could use print() or cat(sprintf()) commands to see

what values variables take inside the function.

debug() lets you see what’s going on inside a function inter-

actively. You can examine (or change!) the value of variables,

or execute any other R command, inside the function. You can

also execute a debugger command

• n - next : execute the next line of code

• c - continue : let the function continue running

• Q - quit the debugger

undebug() can be used to turn off debugging on the function.

The browser() command can also be put inside functions to

start the debugger.

Try debug(my rnorm) and then my rnorm().

This (ie debug()) is like desk-checking a programme. We pre-

tend we are the computer and carry out the programme instruc-

tions by hand on a piece of paper. I usually use this as a last

resort to fix a programme.

Saving a session

Data come to us in many different formats. R has functions to

read them.

It sometime useful to save everything in the workspace (so we

can quit, and continue where we left off later).

save.image(file = ”MyPracSession.Rdata”)

does that. To bring the session back up,

load(file = ”MyPracSession.Rdata”)

R saves in a compressed machine readable format, not easily

read and edited.

