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Importance Sampling Estimator

Slight revision on usual story: we can sample Y ∼ q, Y ∈ Ω.

We want to estimate θ = Ep(φ(X)) where X ∼ p, X ∈ Ω and

φ is some given function φ : Ω → ℜ.

Idea: simulate Y 1, Y2, Y3, ..., Yn ∼ q iid and form the weighted

average

θ̂IS
n (Y ) =

1

n

n
∑

i=1

φ(Yi)w(Yi)

with w(Yi) = p(Yi)/q(Yi).

Proposition: If p(x)φ(x) 6= 0 ⇒ q(x) > 0 and Ep(φ(X)) exists

then θ̂IS
n is unbiased and consistent.
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Proof. Unbiasedness:

Eq(θ̂
IS
n ) =

1

n

n
∑

i=1

Eq

(

φ(Yi)
p(Yi)

q(Yi)

)

=
1

n

n
∑

i=1

∫

Ω
φ(yi)

p(yi)

q(yi)
q(yi)dyi

=
1

n

n
∑

i=1

∫

Ω
φ(xi)p(xi)dxi

=
1

n

n
∑

i=1

Ep(φ(X))

= Ep(φ(X))

so θ̂IS
n is unbiased.



Proof continued. Consistency: show that for each ǫ > 0,

Pr(|θ̂IS
n − θ)| ≥ ǫ) → 0 as n → ∞.

By the Markov inequality for rv Z ≥ 0, Pr(Z ≥ a) ≤ E(Z)/a.

Pr(|θ̂IS
n − θ| ≥ ǫ) = Pr(|θ̂IS

n − θ|2 ≥ ǫ2)

≤
Eq(|θ̂IS

n − θ|2)

ǫ2

=
varq(θ̂IS

n )

ǫ2

=
varq

(

1
n

∑n
i=1 φ(Yi)

p(Yi)
q(Yi)

)

ǫ2

=
varq

(

φ(Y )
p(Y )
q(Y )

)

nǫ
so the probability for a large error tends to zero as n → ∞.



Example: Gamma Distribution

Earlier on we used the transformation method to simulate

Y ∼ Γ(a, b)

for a = 1, 2, 3, ... and b > 0 by summing exponentials. Suppose

we have simulated Yi, i = 1, 2, ..., n iid Γ(a, b) rv, but want to

estimate the expectation of φ(X) in some rv

X ∼ Γ(α, β)

for some α, β > 0.

The Gamma(α,β) density is

p(x) =
βα

Γ(α)
xα−1 exp(−βx)



so

w(y) =
p(y)

q(y)
=

Γ(a)βα

Γ(α)ba
yα−a exp(−(β − b)y)

Hence

θ̂IS
n =

1

n

n
∑

i=1

φ(Yi)w(Yi)

=
Γ(a)βα

Γ(α)ba

1

n

n
∑

i=1

φ(Yi) Yi
α−a exp(−(β − b)Yi)

is an unbiased and consistent estimate of Ep(φ(X)). We can

actually “recycle” the Y ’s and compute Eα,β(φ(X)) for lots of

α’s and β’s.

So far so good.



Variance of the Importance Sampling Estimator

Proposition: If θ = Ep(φ(X)) and Ep(w(X)φ2(X)) are finite

then

varq(θ̂
IS
n ) =

1

n

(

Ep

(

w(X)φ2(X)
)

− θ2
)

.

Each time we do IS we should check that this variance is finite

(and ideally small), otherwise our estimates have infinite variance

and are somewhat untrustworthy! We check Ep(wφ2) is finite.

How can we show Ep(wφ2) is finite? We often know that φ(X)
has finite mean and variance. That means Ep(φ2) must be finite.



If w(x) is bounded w(x) ≤ M for all x ∈ Ω then

Ep(wφ2) ≤ MEp(φ
2) ≤ ∞.

But that is just the same condition we needed for rejection,

p(x)/q(x) ≤ M for all x ∈ Ω

for some M (at least here we only have to show M exists).

However, it may be that w(x) is not bounded, but Ep(wφ2)
is finite (if for example φ(x) gets small when w(x) gets big).

Importance sampling has a wider domain of application than

rejection. It is also statistically more efficient (hardish proof -

lecturer’s prize if you can show this).



Proof:

varq(θ̂
IS
n ) = varq





1

n

n
∑

i=1

φ(Yi)w(Yi)





=
1

n
varq (φ(Y1)w(Y1))

=
1

n

(

Eq

(

w(Y1)
2φ(Y1)

2
)

− Eq (w(Y1)φ(Y1))
2
)

.

The second expectation is Eq(φ(Y1)p(Y1)/q(Y1)) = θ as we

saw earlier. The first expectation can also be converted into an



expectation in X ∼ p.

Eq

(

w(Y1)
2φ(Y1)

2
)

=

∫

Ω

p(y)2

q(y)2
φ(y)2q(y)dy

=

∫

Ω

p(y)

q(y)
φ(y)2p(y)dy

= Ep

(

w(X)φ(X)2
)

and hence

varq(θ̂
IS
n ) =

1

n

(

Ep

(

w(X)φ(X)2
)

− θ2
)

.



Example: Gamma Distribution (continued)

Check that the variance of of our IS-estimator θ̂IS
n for the Gamma

dbn is finite. I will assume Ep(φ) and varp(φ) are finite.

We need sufficient conditions for Ep

(

w(Y )φ(Y )2
)

to be finite.

w(x)φ(x)2 =
Γ(x; α, β)

Γ(x; a, b)
φ(x)2

=
Γ(a)βα

Γ(α)ba
xα−a exp(−(β − b)x)φ(x)2,

so

Ep

(

w(X)φ(X)2
)

∝ Ep

(

Xα−a exp(−(β − b)X)φ(X)2
)

=

∫ ∞

0
p(x)xα−a exp(−(β − b)x)φ(x)2 dx

xα−a exp(−(β− b)x) bounded iff α > a and β > b. Unless φ(x)
saves us, var(θ̂IS

n ) = ∞ when this condition is not satisfied.



Try a = 2, b = 2 and β = 2.5, α = 0.5 (ie α less than a)

and φ(x) = 1. Monitor the weights w(yi) and the sequence of

estimates θ̂IS
m, m = 1, 2, ...n.
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The estimator is hit by occasional huge weights.

Exercise: What would happen if we used φ(x) = x?



Rare Event Estimation and variance reduction

One important class of applications of IS is to problems in which

we estimate the probability for a rare event. In such scenarios,

we may be able to sample from p directly but this doesn’t help.

For example, suppose X ∼ p and we want to estimate

P (X > x0) = Ep (I[X > x0])

with x0 in the extreme upper tail of p(x). We may not get any

samples Xi > x0 and the usual estimate

θ̂n =
∑

i

I(Xi > x0)/n

is simply zero. We can take a q-dbn that puts more probability

at large Y , and then reweight to get expectations in X. By

using IS, we can actually reduce the variance of our estimator.



Example

Say p(x) = N(x; µ, σ2) and we want to estimate θ = P(X > x0)
for some x0 ≫ µ + 3σ.

Take q to be some simple distribution that sits over x0. A natural

choice is q(y) = N(y; x0, σ
2).

The weights w = p/q are

w(y) =
N(y; µ, σ2)

N(y; x0, σ2)

= exp(−(y − µ)2/2σ2 + (y − x0)
2/2σ2)

and the IS estimator is θ̂IS
n = 1

n

∑n
i=1 w(Yi)IYi>x0

.



The variance reduction can be dramatic. Here are 100 estimates

of Pr(X > 4) for X ∼ N(0, 1) using q(y) = N(y; 4, 1).
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Unnormalized Importance sampling

Recall p(x) = p̃(x)/Zp, q(x) = q̃(x)/Zq with Zp, Zq commonly

intractable.

Same issue as for rejection. The IS weights are w = p/q so need

q and p normalized.

Let w̃ = p̃/p̃. If we use 1
n

∑n
i=1 w̃(Yi)φ(Yi) then we find

Eq





1

n

n
∑

i=1

p̃(Yi)

q̃(Yi)
φ(Yi)



 = Eq





1

n

n
∑

i=1

Zp

Zq

p(Yi)

q(Yi)
φ(Yi)





=
Zp

Zq
Ep(φ(X)).



We need to estimate Zp/Zq and divide. 1
n

∑n
i=1 w̃(Yi) is the

estimator we need.

Eq





1

n

n
∑

i=1

p̃(Yi)

q̃(Yi)



 = Eq





1

n

n
∑

i=1

Zp

Zq

p(Yi)

q(Yi)





=
Zp

Zq
Eq





1

n

n
∑

i=1

p(Yi)

q(Yi)





= Zp/Zq

since
∑n

i=1 w(Yi)/n is the IS estimator for φ = 1. We will see

next week that indeed

θ̂IS
n =

∑n
i=1 w̃(Yi)φ(Yi)
∑n

i=1 w̃(Yi)

is consistent for Ep(φ(X)).



Example: we saw that if Yi ∼ Γ(a, b) and

w(y) =
Γ(a)βα

Γ(α)ba
yα−a exp(−(β − b)y)

then

θ̂IS
n =

1

n

n
∑

i=1

φ(Yi)w(Yi)

is unbiased and consistent for Ep(φ(X)) with X ∼ Γ(α, β).
From above, if

w̃(y) = yα−a exp(−(β − b)y)

then

θ̂IS
n =

∑n
i=1 φ(Yi)w̃(Yi)
∑n

i=1 w̃(Yi)

is a consistent estimator for Ep(φ(X)).


