
Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Lecture 5: functions and flow control (in R)

Notes and Problem sheets are available at

www.stats.ox.ac.uk\ ∼nicholls\PartASSP

Overview for lecture 5

1. R functions, function arguments and scoping

2. Flow control with for(), if()-else and while().

3. Examples (Sieve of Eratosthenes and Newton’s method).

Functions: what and why

What: functions take input, perform operations on the input
and return output. Functions help us break down a big problem
into modules. We can get each function working accurately and
build up a working system. Functions help us avoid repeating
the same sequence of commands in lots of different places.

The general definition of a function is :

MyFunction = function(arguments) expression

The arguments can defined with defaults. When the function is
called the arguments are passed to the expression for evaluation.

A simple expression is a statement (like a<-pi^2/2). A
compound expression is a sequence of statements in braces:
{statements}. A function expression returns the last evalu-
ated statement. We will use the return() function to end
expressions to spell out to the reader what the function returns.

A function computing the p-norm

n
∑

i=1

|xi|
p

1/p

of x ∈ Rn:

g<-function(x,p=2) {

#my pnorm function

y=abs(x)

z=sum(y^p)

return(z^(1/p))

}

g(c(3,4)) returns 5 (no p set so default p=2 used).

g(c(3,4),1) or g(c(3,4),p=1) returns 7.

A function returns the value of the last statement evaluated so

the return() command is often omitted.

Variable scope

The scope of a variable tells us where the variable is visible.

Generally speaking you want a variable to be visible only where

it is needed, to avoid clashes with other variables that have the

same name.

In R, the variables in a function are local to the function. The

environment calling the function (for example, the R-console

workspace, or another function) cant see the variables inside the

function (only the return values). On the other hand the called

function can see the variables in the environment that called it

(the parent environment).

For example, if we define a function f() in the R-console

f<-function(x) {

a=b*x^2

return(a)

}

set a=2, b=1 and call f(5) the function returns 25.

The function found b in the workspace that called it.

In the console a is still 2 because the function created its own

local variable a.

for loops

A for-loop repeats some commands a fixed number of times.

Example: Plan and write a function computing the first n terms

in the Fibonacci sequence 1 1 2 3 5 8 13 21

We will build up the sequence in a vector x = (x1, x2, ..., xn). In

order to calculate the ith entry we will add xi−1 and xi−2, the

previous two elements of the vector, and write the result into

the ith entry in x.

fibonacci = function(n) {

#evalute first n terms in Fibonacci sequence

x = numeric(n)

x[1:2] = 1

for(i in 3:n) {x[i] = x[i-2] + x[i-1]}

return(x)

}

The general form is

for (variable in sequence) { statements }

if and if else statements

The if() statement controls which statements are executed.

if (x > 2) {
y = 2 * x

} else {
y = 3 * x

}

sets y=3 when x = 1 and sets y=8 when x=4.

Can have a simple if() without the else. The following gives

a warning when x=1 and y=3 (so z=NaN)

z=(x-1)/(y-3)
if (is.nan(z)) warning(’z is not a number’)

The while() loop

Repeat a set of statements until a condition is satisfied.

Write an R-function to simulate a standard normal random vari-

able conditioned to be greater than a for given real a.

Z<-function(a) {
z=rnorm(1) #rnorm(1) simulates 1 N(0,1) rv
while (z<a) {

z=rnorm(1)
}
z

}

The code repeats the simulation until the condition is satisfied.

Now Z(2) simulates Z|Z > 2 for Z ∼ N(0, 1).

Returning more than one function output

Use a list to return multiple outputs to the calling environment.

Example: modify the previous example to return the simulated

value and the number of trials.

Z<-function(a) {

count=1

z=rnorm(1)

while (z<a) {

z=rnorm(1)

count=count+1

}

return(list(value=z,trials=count))

}

> Z(3)

$value

[1] 3.224885

$trials

[1] 773

> 1/(1-pnorm(3))

[1] 740.7967

The Newton method for root finding

Suppose we wish to find a root of an algebraic equation

f(x) = 0.

If f(x) has a derivative f ′(x), then the following iteration will in

general converge to a root if started close enough to the root.

x0 = initial guess

xn = xn−1 −
f(xn−1)

f ′(xn−1)

The algorithm runs until |f(xn)| < ǫ.
The idea is based on the Taylor approximation

f(xn) ≈ f(xn−1) + (xn − xn−1)f
′(xn−1)

NOTE : this method may fail to converge.

Newton-Raphson Example Suppose f(x) = x3 + 2x2 − 7.

f <- function(x) {x^3 + 2*x^2 - 7}
f.prime <- function(x) {3*x^2 + 4*x}

nr <- function(x, tol = 0.001) {
#Newton-Raphson iteration for f
while(abs(f(x)) > tol) {

x = x - (f(x) / f.prime(x))
}
return(x)

}

The return value for nr(4) is approx. 1.428820. Compare

1.428817702 (Maple, numerical evaluation of exact solution to

cubic).

Example (first iteration shown starting at x0 = 4).

−4 −2 0 2 4

−
50

0
50

10
0

15
0

f(x)=x^3 + 2*x^2 − 7

x

f (
x)

See you on Monday

Our next meeting is in the lecture theatre in the Statistics De-

partment SPR1.

The second problem sheet will appear online at

http://www.stats.ox.ac.uk/~nicholls/PartASSP/

this weekend and is due in 12 days (Wednesday Week 5 at 5pm).

Homework: install R and complete the practical in your own

time.

