
Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Lecture 4: Rejection sampling

The Rejection algorithm

Here is second proof that explores the algorithmic structure of

rejection. In the first proof we used the notation for a continuous

scalar random variable. This time I will set it up for sampling

a scalar discrete variable. This is just for simplicity. Each ap-

proach can be applied to both kinds of variables and both can

be extended to the multivariate case.

Consider Ω = {1, 2, 3, ..., M}.

For x ∈ Ω let p(x) be the probability mass function for X.

If p = (p1, p2, p3, ..., pM) then p(x) = px.

As before we suppose we have M so that M ≥ p(x)/q(x) for

each x ∈ Ω.

Rejection Algorithm simulating X ∼ p:

[1] Simulate y ∼ q(y) and u ∼ U(0, 1).

[2] If u < p(y)/Mq(y) return X = y and stop, and otherwise

goto [1] and try again.

Let Pr(X = x) be the probability this algorithm returns X = x.

We want to show that Pr(X = x) = p(x).

Claim: The number of trials in the rejection algorithm is geo-

metric with mean M

Proof: each trial at [2] succeeds independently with probability

ξ say. In order to succeed we must draw a y and accept it. The

first event (draw y) happens wp q(y). The second event (accept

y) happens wp p(y)/q(y)M . We dont care which y it is so...

ξ =
∑
y∈Ω

q(y) × p(y)/(Mq(y)) (1)

= 1/M (2)

because
∑

y p(y) = 1. If the number of trials is N then

E(N) = 1/ξ = M

Comment: Each time we execute steps [1-2] we fail wp 1−1/M

Claim: The probability the algorithm returns X = x is p(x).

How do we end up with X = x? When we enter the loop [1-2]

the probability we draw x and then accept it is

q(x) × p(x)/Mq(x) = p(x)/M.

However we might pass through [1-2] any number of times. We

can draw x and then accept it at the first pass, or at the second

pass, or third and so on.

Pr(X = x) =
p(x)

M
+ (1 − 1/M)

p(x)

M
+ (1 − 1/M)2

p(x)

M
+ ...

=
p(x)

M

∞∑
n=1

(1 − 1/M)n−1

= p(x).

as supposed.

First comment: Where did we use Mq(x) ≥ p(x)? If for some

y, p(y)/q(y) ≥ M then the probability u ≤ p(y)/Mq(y) at step

[2] is one, not p(y)/Mq(y).

Exercise: show that rejection simulates

X ∼ min(p(x),Mq(x))

(and hence X ∼ p(x) if p(x) ≤ Mq(x) for all x).

Second comment: The mean number of trials is M . If we are

conservative and choose a very large M , in order to ensure the

bound M ≥ p(y)/q(y) holds for all y, then the number of trials

is very large, and the implementation runs slowly.

Example Use Y ∼ U(0, 1) (ie q(x) = 1) to simulate X ∼ p(x)
with p(x) = 2x for 0 ≤ x ≤ 1. Calculate the mean number of

trials per simulated X-value.

Step 1. Find M so that p(x)/q(x) ≤ M for all 0 ≤ x ≤ 1. Here

p(x)/q(x) = 2x. We can use M = 2 since 2x ≤ 2 there. We

have p(y)/q(y)M = y for the second step.

Step 2. Write down the algorithm.

Rejection Algorithm simulating X ∼ 2x:

[1] Simulate y ∼ U [0, 1] and u ∼ U [0, 1].

[2] If u < y return X = y, and otherwise goto [1] and try again.

The mean number of trials is M = 2.

Implement this algorithm in R:

> while (runif(1)>(x<-runif(1))) {}; x

[1] 0.8843435

Compare the histogram of 10K samples with the target density.

X

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Normalizing constants and the rejection algorithm

A probability density p(x), x ∈ Ω must be normalized, so that∫
Ω

p(x)dx = 1.

We can specify a probability density by just giving a function

p̃(x) propotional to p(x). If

p(x) ∝ p̃(x)

then p(x) = p̃(x)/Zp with

Zp =

∫
Ω

p̃(x)dx.

p(x) is determined from p̃(x), even if we cant calculate it.

Normalizing constants are hard to calculate, so we like algorithms

that simulate X ∼ p without our needing to calculate p(x). The

rejection algorithm is one of these.

Suppose (usual setup) we can simulate Y ∼ q and we want

X ∼ p. What if we can only calculate q̃(x) and p̃(x) and not Zq
and Zp (so not q and p).

Suppose we can find M so that M ≥ p̃(x)/q̃(x) for all x.

Rejection Algorithm simulating X ∼ p:

[1] Simulate y ∼ q(y) and u ∼ U(0, 1).

[2] If u < p̃(y)/Mq̃(y) return X = y, otherwise goto [1].

Nowhere in this algorithm did we need to compute p(x) or q(x).

Example: The random variable X has probability density

p(x) ∝
sin2(x)

x2
, −∞ < x < ∞

Give a rejection algorithm which simulates X using iid simulation

of Y ∼ q with q(y) ∝ (1 + y2)−1 (the Cauchy distribution).

Y

D
en

si
ty

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

X

D
en

si
ty

−5 0 5

0.
0

0.
1

0.
2

0.
3

Step 1: bound p̃/q̃.

p̃(x)/q̃(x) =
(1 + x2) sin2(x)

x2

=
sin2(x)

x2
+ sin2(x)

≤ 2

because | sin(x)/x| < 1. We can take M = 2.

Step 2: we have the following algorithm for X ∼ p(x).

[1] Simulate y ∼ t(1) and u ∼ U(0, 1).

[2] If u < (1+y2) sin2(y)/2y2 return X = y, otherwise goto [1].

The histogram at the start of this example was produced from

the implementation of this algorithm in the R-code associated

with this lecture.

Comment: You will come across the t-distribution later this term

in Part A Statistics. The t-distribution with one degree of free-

dom (called t(1), or the Cauchy distribution) has density

q(y) ∝ (1 + y2)−1.

Y is easy to simulate. If

Z1, Z2 ∼ N(0, 1)

are iid standard normal and we set

Y = Z1/Z2

then Y ∼ t(1).

We can calculate the normalizing constants for both q and p
using contour integrals but F−1(u) is very hard work for X.

Why does “unnormalized” rejection work? Let M ′ = MZq/Zp.

The test

u < p̃(y)/Mq̃(y)

is the exactly the same as the test

u < p(y)/M ′q(y).

We cant calculate M ′, p or q, but if we use M with p̃ and q̃ it

is just as if we were using M ′ with p and q. However,

M ≥
p̃(x)

q̃(x)
⇔

MZq

Zp
≥

p̃(x)Zq

q̃(x)Zp
⇔ M ′ ≥

p(x)

q(x)
,

so the M ′ “implied” by our choice of M satisfies M ′ ≥ p(x)/q(x)
for all x, and that means the revised algorithm is correct.

When we worked out the mean number of trials we worked with

normalized densities. If we work with unnormalized densities (use

M to bound p̃/q̃) the mean number of trials is M ′ = MZq/Zp.

See you tomorrow and on Friday

Our next meeting is our problem class 4pm tomorrow in the

building next door. Later this week (Friday 2pm) we meet in

Evenlode in the OUCS facility at 13 Banbury road.

The second problem sheet will appear online shortly at

http://www.stats.ox.ac.uk/~nicholls/PartASSP/

It is due Wednesday 5pm of Week 5 at 1SPR.

Homework: you will need R to do problem sheet 2. If you dont

have all-hours access to R by now (and need help) let me know.

